Science Interviews

Interview

Sun, 19th Feb 2012

Virus detection, fighting parasites with alcohol, drugs on a chip and tiny chameleons!

Paul Milner, University of Leeds
Tood Schlenke, Emory University
Michael Cima, MIT
Frank Glaw, Zoologische Staatssammlung Frank Glaw, Zoologische Staat

Listen Now    Download as mp3 from the show ZAP! Lasers on trial...

The Fast way to detect Viruses

A fast, non-invasive, test for virus infections has been developed by scientists at the University of Leeds.

Current testing methods involve identifying the genetic material of a virus in samples in the lab. But now, working with adenoviruses, Paul Milner has developed a biosensor formed from antibodies and electrodes that reveal not only the presence of a virus as but also the number of virus particles present directly from a patient's sample.

Drosophila melanogaster flyPaul -   The antibody binds the virus, this changes the surface of the electrode and it changes various properties of the electrical current that passes across that electrode.  The key point about this is there's no processing.  It’s literally put the sensor into your sample, that's your measurement!  This is about speed and ease of use.  So you could easily do these tests in a doctor’s surgery or for some conditions even at home if it was something you have to monitor frequently.

 

Fruit Flies resort to Alcohol

Fruit flies use alcohol to self-medicate against parasitic infections.

Larvae of the common fruit fly Drosophila Melanogaster feed on microorganisms found on rotting fruit, exposing them regularly to a high intake of alcohol.

The larvae are also vulnerable to infection with parasitic wasps which eat the flies from the inside out and cause death.

But now, infecting fruit flies in the lab and exposing them to food containing alcohol, Todd Schlenke from Emory University found that flies infected with wasps purposely consume high doses of alcohol which poisons and kills the parasite.

Todd -   Infected flies chose alcohol food at about an 80% rate whereas uninfected flies chose the alcohol food only at about a 30% rate.  So flies that are infected, they realise they're infected and they seek out alcohol to try to cure their infections.  These animals out in nature have really, really complex behaviours that can help them fight off infectious disease.  We probably unknowingly have similar kinds of behaviour.  Alcohol might actually act as a protective toxin against infectious disease and something that should probably be followed up in other organisms.

 

Drugs on a Chip

Microchips have been used to deliver drugs in patients with osteoporosis.

Ensuring patients take their drugs on schedule and at regular intervals can be a challenge when treating many medical conditions.  Robert Langer and colleagues from the Massachusetts Institute of Technology, have overcome this with the design of a chip, implanted under the skin and activated wirelessly, to deliver doses of a drug into the bloodstream at precise times.

Clinical trials delivered a parathyroid hormone, used to improve bone density, in 7 female volunteers with osteoporosis but the technology has the potential for a range of applications.

Michael -   This is the first time that implanted electronics have been used to deliver drugs.  There are many applications for potent drugs that require subcutaneous injections - MS, diabetes, reproductive health, human growth hormone treatments - so there are many diseases that are treated with very potent drugs like the ones we’re able to deliver with this device.

 

 

brookesia micraWorld’s Smallest Chameleon

And finally, Some of the world’s smallest chameleons have been discovered on the island of Madagascar by researchers from the Zoologische Staatssammlung in Munich.

Four new species were identified by Dr Frank Glaw as they moved from their daytime dwellings of leaf litter and climbed onto branches or leaves to rest at dusk. The smallest of the group, Brookesia micra is one of the smallest reptiles known and reaches a maximum of just 29mm in length.

Frank -   It seems that miniaturisation of animals on small islands gives them a new ecological niche.  The competition for example of invertebrates, of spiders, or minor invertebrates are not existing in these islands.  And so, these animals can evolve into this particular niche that might otherwise on the mainland be occupied by larger animals.

The finding was published this week in the journal PLoS One.

Multimedia

Subscribe Free

Related Content

Not working please enable javascript
Wellcome Trust
EPSRC
Powered by UKfast
ipDTL
STFC
Genetics Society