Science Interviews

Interview

Mon, 30th Jun 2014

Climate Engineering

Dr Kirsty Kuo, Cambridge University

Listen Now    Download as mp3 from the show Engineering the Impossible

Could we stop climate change by pumping particles into the ozone? And more Above the cloudsimportantly, should we? Dr Kirsty Kuo- Research is an associate at Cambridge University Department of Engineering and works on a project called SPICE. SPICE is trying to mitigate climate change by using a giant balloon to pump sulphur dioxide into the atmosphere. She told Ginny Smith what climate engineering is and how we could use it to help stop climate change.

Kirsty -  The field that I'm working on is called climate engineering.  Itís an idea that has been around for some time, but it hasnít really been talked about because itís quite controversial.  The idea is that we could modify the Earthís climate so we could make it hotter or we could make it colder.  And now because global warming is such a challenge for us in this generation, weíre starting to think about ways that we could make the climate colder so that we could counteract the effect of global warming.

Ginny -  I thought global warming, weíre causing that by burning lots of fossil fuels, putting on this carbon dioxide up there.  We just need to stop that, find new methods of making energy and then weíll be okay.  You're doing something a bit different though.

Kirsty -  Yes, so our message is that absolutely, we have to reduce our carbon dioxide emissions.  There's no way we can get around that.  Itís something that we have to do.  But itís a bit like your house being on fire really.  If your house is on fire, you want a fire engine to come and put it out.  And thatís a bit like, if climate change happens, we want something that can have quite an instant effect and quite a big effect.  And so, weíre thinking about this idea of climate engineering.  Unlike a fire engine which the effect is to put the fire out and thatís all it does, climate engineering would have lots and lots of different effects.  It wouldnít just lower the Earthís temperature.  It would also cause changes in rainfall and changes in local climates, and also, changes in chemistry in the atmosphere.  And these changes are really serious and itís not something that we want to take on without thinking about it and doing research, knowing exactly what's going to happen.

Ginny -  So, how are you going to go about making the Earth cooler then?

Kirsty -  So, our idea comes from volcanic eruptions particularly in 1991, Mt. Pinatubo erupted and it put lots of ash and other chemicals up into the atmosphere.  One of the things they put up was sulphur dioxide.  These sulphur dioxide particles are really quite small, but they're just a perfect size to reflect some of the sunís light thatís coming towards Earth.  And so, these particles produced a cooling effect of about half a degree C for 12 to 18 months after the volcanic eruption.  Our idea is that if we could imitate a volcanic eruption then maybe we could see a similar cooling effect.

Ginny -  I donít really like the idea of imitating a volcano.  A volcano is quite scary and quite dangerous.  I'm guessing you're going to do it in a slightly more controlled way.

Kirsty -  Thatís right.  Weíre not going to go and just blow up volcanoes around the Earth.  So the idea is to get some kind of reflective particle whether itís sulphur dioxide or something else, and to pump it up into the stratosphere and at a height of 20 km because thatís where it will stay for about 12 to 18 months before these particles start to fall down to the Earth.

Ginny -  How on earth do you get it up that high?

Kirsty -  Well, there's lots of different ideas of how you could do it.  So, you could say, Well, weíve got airplanes that fly at about 10 km.  There are some very special military ones that can fly at 20 km, so why donít we use those?  The problem is, is that it takes a lot of energy to get the aircraft up to 20 km and get it back down again with a package of these particles.  So, much more energy efficient way of doing it is to build a giant structure where we could pump these chemicals up.  Now building a giant tower isnít possible because the strength of the material isnít large enough.  But the way we propose to do it is to build a giant hose and this hose would be held up by a balloon and the balloon would have to be the size of the Wembley stadium to hold up this 20 km of hose and through the hose, we can pump these particles and spray them out at 20 km.

Ginny -  What's the balloon filled with?  Is it helium, like an almost sort of party balloon that floats?

Kirsty -  It would probably have to be hydrogen because helium is in quite short supply and itís very expensive.

Ginny -  So, weíve got a giant hydrogen balloon in the sky with a hose and then how do you get the material to go up the hose?

Kirsty -  Well, you have to pump it up like when you turn on your hose pipe at home, there's water pressure which is driving the water through the hose.  In the same way weíd have to supply pressure at the ground level to move these materials up through the hose.  The problem is that the pressure is going to be extremely high.  Even in industrial applications where they use very high pressures, itís even higher than that.  So, thatís one of the big engineering challenges of thinking about this kind of technology.

Ginny -  And how much of the stuff would you have to put up there to make a difference?

Kirsty -  Well, theyíve estimated that to cause a 2-degree change in the global mean temperature.  Weíd need 10 million tons of sulphur dioxide.  That sounds like an awful lot, but once it gets spread around the Earth, it actually turns out to be about 1 teaspoon of material for 1 square km of the Earthís area.

Ginny -  Fascinating!  So, whoís got any questions on that?  Weíve got lots of hands up already.  One down the front to start withÖ

Freddy -  I'm Freddy from Little Downham.  I was thinking because I watched a YouTube video about ways the universal or the world could end.  And it included super volcanoes which could block out the sky and create another ice age.

Ginny -  Freddy, are you asking Kirsty whether sheís planning to end the world?

Freddy -  No, I was thinking, is that the same sort of thing or is that slightly different?

Kirsty -  Yes, thatís exactly the same thing.  And so, yeah, it is quite scary, isnít it?  But Mt. Tambora erupted about 200 years ago and this eruption was so big that it caused something that was called ĎThe year without a summerí.  Basically, in Europe, there was no summer that year because of this volcanic eruption and it led to huge food shortages and famines.  The interesting thing about that year without a summer was that, that was a year that Mary Shelley wrote Frankenstein.  And so yes, it is possible that a big volcanic eruption would cause huge problems around the world.

Ginny -  So, if in a few yearsí time, you see Kirsty and sheís stroking a white cat and asking for a million pounds or sheíll blow up the world, she could do it.

Erusha -  My name is (Erusha) and I'm from Cambridge.  My question is, would you need to get some kind of international agreement to do this presumably because itís global temperatures that you're affecting?

Kirsty -  Yes, thatís one of the huge challenges.  So, what weíve done to date is weíve been doing a feasibility study to try and understand the effect of climate engineering.  We haven't done any actual experiments and thatís because of the international agreement that you would need.  There's a lot of discussions that are going on as to how you would get this international agreement.  Itís not really clear how that would happen and whether it would ever happen.  And so, there is a fear that someone could decide to do this on their own and it would affect the whole Earth.  But hopefully, weíll never get to that stage.

Ginny - David...

David -  I'm a bit concerned about acid rain.  So, you put sulphur dioxide in the atmosphere, when it rains, you wash all these sulphur dioxide down and thatís sulphuric acid.

Kirsty -  Yes.  So, acid rain is one of the problems with sulphur dioxide.  One of the other major problems is that it destroys ozone and so, you would essentially destroy our ozone layer.  And thatís why, part of this research project is to look at different types of particles and to see if there's a better particle that we could use that wouldnít have the same effects on stratospheric chemistry.

Sam -  My name is Sam.  I'm 12 and I'm from St. Yves.  You said thereíll be a big balloon in the size Wembley.  What if there was a thunderstorm?

Kirsty -  Thatís a great question.  Now, most of our weather happens much closer to the Earth in 20 km and so, itís unlikely that the balloon would get hit by lightning.  But itís very likely that the hose could get hit by lightning because basically, weíve just stuck a giant lightning rod up into the atmosphere saying, ďCome and hit this thing with lightning.Ē  And so, that is something that we have to think about and whether we make it out of a non-conducting material to try and reduce that effect, or whether we have to take other measures to try and reduce the possibility of it being hit by lightning or somehow manage that.

Peter -  My name is Peter from Cambridge.  I was wondering, could you try it first by pumping ozone into the ozone layer before trying it out with sulphur dioxide?

Kirsty -  Thatís an interesting idea.  Well, I think however it gets tried out, itís going to have to be very carefully managed because once you disturbed the atmosphere, itís not just a single point that you're disturbing.  Because of the winds that travel around the Earth, you're going to be disturbing the whole climate.  And itís also very difficult to know what effect pumping anything into the atmosphere has because I can pump it in here but then how do I know if the rainfall in India has changed because of what I've done or because of some other process.  And so, thatís one of the real challenges with, how could you test this type of engineering technology.

Helen -  I'm Helen from Cambridge.  So, the idea is to lower the temperature, but obviously, some places, temperatures has been lowering and thatís not a good thing, well that would make it worse in some places and better in others.

Kirsty -  Yes, thatís absolutely right.  So, climate engineering will not be a win-win situation for everyone.  It would cause a global mean temperature drop, but some places will get hotter, other places will get cooler.  Also, the rainfall patterns will change.  So, some places will get less rain, some will get more rain, and it doesnít solve all the problems of climate change even because there's ocean acidification because we have more carbon dioxide in the air.  Itís becoming dissolved in our ocean.  Itís destroying coral reefs and things like that, and climate engineering wouldnít fix ocean acidification.  So, there are many cons to this type of technology and itís something weíd have to think very long and hard about before we decided to do something like this.

Ginny -  Kate, youíve got one final question.

Kate -  Yeah, for me.  So Kirsty, everyone has been saying, ďThere's a problem with this and it will raise the temperature, it might destroy the ozone.Ē  There are so many problems with this.  Why are you still doing it?

Kirsty -  It does keep me awake at night, thinking of all the problems with this kind of technology.  Basically, weíre worried that one day, we might get to a point where doing nothing is no longer an option and doing something to lower the global mean temperature despite what the side effects are, whether they're known side effects or unknown ones, it might be something that we accept because the situation is so dire.

Multimedia

Subscribe Free

Related Content

Comments

Make a comment

Ah, engineering climate to stop climate change.
Well, I do agree that we should stop polluting, but think about it - stop climate change? Climate has always changed, for better or worse, one cause or another and stopping climate change would be kinda.. well.. unnatural, for lack of a better word. McKay, Mon, 7th Jul 2014

The pseudo-scientific voodoo of chemtrails may worsen global warming and destroy the ozone layer.



http://www.expertclick.com/NRWire/Releasedetails.aspx?id=74992



http://iopscience.iop.org/article/10.1088/1748-9326/4/4/045108/meta

No ozone layer = no life... tkadm30, Tue, 12th Apr 2016


http://www.expertclick.com/NRWire/Releasedetails.aspx?id=74992

The origin of that quote is "geoengineeringwatch.org" ,
https://www.mywot.com/en/scorecard/geoengineeringwatch.org ] , in an article apparently written by a double-doctor : "Dr. Hans J. Kugler, PhD" who currently has 25 followers on Twitter.

The pill-pushers he lends his name to only have him down as a single doctor, (PhD , not Dr-PhD) ...





http://www.quackwatch.org/11Ind/jlradvisors.html RD, Wed, 13th Apr 2016

Facts:


Geoengineering activity destroy the ozone layer.
Geoengineering is a clandestine military operation.
Geoengineering is pseudo-scientific voodoo.
Geoengineering destroy Earth's biota.
Geoengineering is prohibited by the adoption of the UN biodiversity treaty.


http://cen.acs.org/articles/88/i45/Countries-Agree-Ban-Geoengineering.html tkadm30, Thu, 14th Apr 2016

See the whole discussion | Make a comment

Not working please enable javascript
EPSRC
Powered by UKfast
STFC
Genetics Society
ipDTL