Science Interviews

Interview

Mon, 21st Sep 2015

Inside Accident and Emergency

Dr Adam Brooks, Major Trauma Centre at Nottingham

Listen Now    Download as mp3 from the show How to Save a Life

Once everything has been done for the patient in the field and they’re en route to Saline driphospital, what happens next? How do A&E - the accident and emergency department - prepare for a patient that is bleeding to death? Dr Adam Brooks is the Director of the Major Trauma Centre at Nottingham, and he explained to Chris Smith how they prepared for a 'code red' situation?

Adam - The first thing we do when we get a 'code red' call from the paramedics is activate the trauma team so that we get all the members of the trauma team down to emergency departments before the patient arrives. With a 'code red', we need the most senior doctors that we can get. So, that’s consultant anaesthetist, consultant surgeon, consultant from the emergency department, all there, waiting for the patient. Everyone gets a job and we work with lots of protocols but we will task allocate everyone to a specific thing that they need to do so that we all work together seamlessly. The other thing obviously we got to do before the patient arrive is get the appropriate equipment. Some of that depends on the information we’ve received from the pre-hospital paramedics but we may need to be prepared to do surgery. We may need to be prepared to put tourniquets on limbs, anesthetise the patient, or move them very rapidly to CT scan to get further imaging or straight to the operating room.

Chris - If you do have to take them to theatre, what would you be aiming to do in theatre to save their life?

Adam - If we are taking a code red patient to theatre, what we’re aiming to do is stop the bleeding. After the airway and breathing, that’s the things that kills you. We still have far too many patients who bleed to death before we can intervene which is why that timeframe from injury through to definitively stopping the bleeding, definitive haemorrhage control is so important. So, we head the patient to theatre, we need to decide where we need to go to stop the bleeding. We may be doing that as surgeons, but we may also be doing it alongside interventional radiology colleagues, x-ray doctors, who can use techniques, float balloons, put wires into blood vessels to also stop the bleeding. But we need to decide, do we open the chest, do we open the abdomen, where is the most compelling source of bleeding that we need to address first?

Chris - Why does severe haemorrhage lead to a person being at high risk of death?

Adam - If you’ve not got blood to pump round you're not carrying any oxygen around to the cells. If you're not carrying any oxygen around to the cells, the heart will fail, the brain will fail.

Chris - So, once you’ve got control of the bleeding, what do you do next?

Adam - That sometimes may take a couple of goes. Working closely with the anaesthesia team, we’ve been resuscitating the patient with blood and blood products essentially, the equivalent of giving whole blood but in its constituent parts. Because our aim is really stop bleeding, the next thing we need to do is stop contamination. Certainly, if we’re in the abdomen and the bowel has been injured, we don’t want that bowel content or faeces to be swilling around the abdomen. So, we can staple off parts of bowel, we leave them stapled, we don’t join them up. We’ll quite often in the most severely injured patients not even close the abdomen. We’ll do a temporary dressing, leave the staple off the ends of bowel in the patient, put a temporary dressing no the abdomen and then the patient continues the resuscitation through in the intensive care unit. The reason we do that is that the patient will have reached their physiological reserve. We can't push anymore. We can't do anymore. We need to get them some reserve back. So we need to pause that surgery and really now over the last 5 or 10 years, surgeons involved in trauma will be concentrating on the physiology rather than just the anatomy.

Chris - How have practices in acute resuscitation like you’ve been describing changed in the last 5 or 10 years? What have we learned that we used to do that’s less effective and that if we do different things now will actually save more lives?

Adam - Well we used to give patients clear fluid, saline or another clear fluid called Hartmann’s’ solution to give them the fluid because we thought they'd lost blood, so we’re going to give them some fluid. We don’t do that anymore. For more severely injured patients, we need to give blood and blood products in a ratio, about 1 to 1, so that they have this chance of clotting. So, what's happened over the last 5 or 6 years is there's been a number of incremental changes. So the change in the way we operate, on physiology rather than anatomy, change in the way that we resuscitate, going to blood and blood products, a change in the timing of what we do, doing certain things in small parts. Because of that, over that period of time, the chance of death from haemorrhage in most severely injured patients has nearly halved.

Chris - Wonderful! At the point that you have stabilised the person, that’s when you hand them on to the intensive care doctors and they take them out of the accident emergency department and they will then look after them there where they have lots of different specialists who can come in and deal with them in that very, very specialist environment.

Adam - Yeah, that’s correct. most of the big surgery will be done in the operating rooms. We may have to start in the emergency department then move to the operating room. We stabilise the patient, we work with our anaesthetic colleagues and then we’ll transfer that patient to the intensive care unit where resuscitation will continue but in a slightly different way, trying to give them back that physiological reserve and to continue what's been started at the roadside.

Multimedia

Subscribe Free

Related Content

Comments

Make a comment

See the whole discussion | Make a comment

Not working please enable javascript
EPSRC
Powered by UKfast
STFC
Genetics Society
ipDTL