Science Interviews

Interview

Sun, 21st Oct 2007

Inside the Atom

Dr Ben Allanach, Cambridge University

Listen Now    Download as mp3 from the show Particle Physics - The Secrets of the Universe

Chris -   Weíre looking at the origins of the universe, whatís inside matter, what are atoms made of this week.  Letís kick off by talking first of all to Ben Allanach,  a theoretical physicist at the University of Cambridge.  So when weíre talking about atoms I think even the ancient Greeks (sort of Democritusí time) had a concept of the atom, as this tiny particle which you can link lots together and youíve got something.  How do we actually know whatís inside them?

Ben -   A hundred years ago Earnest Rutherford, down in the Cavendish lab, here in Cambridge fired radioactive particles into atoms and you can tell from that roughly speaking whatís going on inside.  One in about every eight thousand of these particles came back at him.  He measured those with a Geiger-Counter.  That led him to completely throw away the model at the time which was the Ďplum puddingí model of some sort of squishy stuff which was positive with little electrons dotted around it.  What he realised was that most of the atom is actually empty space, with light electrons flying around the outside.  Inside thereís a very small, hard, dense core called the nucleus.

Chris -   Itís interesting, what you say about the empty space Ben, Iíve got an email here from Jack Dao who says, ĎHi guys Iím listening in Brooklyn, New York and I like your program. Iíve heard thereís a vast empty space between the orbiting electrons and the nucleus of an atom but Iíve been told that if all the empty space was taken away so that every single electron touched another electron and the nucleus then the size of the world would theoretically be the size of a melon.

Ben -   That could actually be true.  Iíd have to do a calculation on the back of an envelope to be absolutely sure but it is a huge amount of space and the particles inside are tiny.

Chris -   What are the actual particles that make up an atom?

Ben -   Around the outside you have electrons, theyíre light, negatively charged particles and inside you have the nucleus which is made up of protons and neutrons.  Theyíre kind of heavier stuff that stick together quite well.

Chris -   And how big are these things?

Ben -   An atom is roughly 10-10m so thatís a tenth of a billionth of a metre across and the tiny constituents in the middle are almost a million times smaller than that so theyíre just unimaginably tiny really.

Chris -   And the nucleus is positively charged because itís got the protons in it and the electrons are negatively charged.  Now I can understand why the electrons would be clung-on to by the positive core of each atom.  Why is it that all those protons with that big positive charge can be stuffed together and they stay there?  They donít fly apartÖ

Ben -   Thereís an additional force keeping them together thatís called the strong nuclear force.  Theyíre stuck in there with neutrons as well and this thing just sticks them together.

Chris -   And so how do we work out what the different atoms are because if Iíve got an atom of oxygen which Iím breathing, how is that different from say the atom of carbon that Iím burning to make the energy in my body?

Ben -   You can weigh them through indirect means and you can work it out through chemical reactions and so on to work out how many of the different atoms make different substances up.

Kat -   Delving a bit more deeply into the structure of matter, you hear about things like quarks and neutrinos and all these kinds of things.  How do they fit in and how do we know that theyíre there?

Ben -   Well, as far as we know theyíre the smallest bits of matter and so if we go deeper into the nucleus, for instance, every proton and neutron is made up of three smaller particles and theyíre quarks.  Theyíre stuck together with this strong nuclear force so by breaking up protons you can actually detect these things indirectly.

CMS detector at CERNKat -   This is where things like particle accelerators come in?

Ben -   Thatís right yeah.  So Rutherfordís initial experiments of the radioactive atom are now being done at much higher energies in order to delve deeper and deeper into the protons.

Kat -   So tell us a bit more about what youíre doing.  I sort of understand it as you do the maths and then the particle accelerator people try and work out if itís right or not.

Ben -   Yeah, it gets a blurred around the edges though.  We both do bits of each otherís jobs. Thatís right, I do a lot of theory and thereís a lot of sums.  I try and work out models of the early universe to explain facts about the universe that you see today and then most importantly, to work out ways of testing these theories by looking at the data coming out of the experiments.

Kat -   So this is working out what you should see if you smash two particles together?

Ben -   If the theory is right, yeah.

Chris -   So why do you want to smash things together?  How does that actually help?

Ben -   Because we canít actually see with the naked eye or even with a microscope we canít actually see these particles.  Theyíre much too small so the only way to probe them at all is to have something very high in energy that breaks them apart and you can see what they decay into, for instance.  You can get a picture of what happens after those collisions.  Thatís the only way you have, really, of probing them.

Chris -   Whatís new about the large hadron collider?  What have we done in the past and how does this differ?

Ben -   Plenty of different collisions have been happening in the past and basically the energy gets higher and higher and higher every time.  In Einsteinís equation E=MC2, if youíre got more energy you can make heavier particles.  So particles that were previously undiscovered, when you pass an energy threshold, all of a sudden youíll be able to produce them.  Thatís whatís hoped particularly for the Higgs boson hypothetical particle thatís hoped will show up there.

Chris -   So up until now people have been slamming things together the same way as they will do in the LHC but now theyíre gonna be able to do it even more powerfully?

Ben -   Yeah, basically thatís right.  The technologyís come on a lot and thatís why theyíre able now to do such high energy collisions.

Kat -   Whereís this gonna stop?  If weíve got this new, exciting, huge particle accelerator, what if you do some sums youíll find some evidence that means youíll have to build an even bigger one to get even higher energies?  Do you think that the LHC would be the answer to everything?

Ben -   Not necessarily.  You might need to build one more, actually.

Kat -   An even bigger one?

Ben -   Well, it wonít necessarily be bigger.

Chris -   Donít these things consume energy on the scale of a national grid just for one experiment?

Ben -   Itís not as much as that, actually.  It is a lot of power, its 100MW or so.

Chris -   Thatís about 20% of a reasonable nuclear power station.  So thatís quite a lot isnít it?

Ben -   Itís a lot of power so you do have to weigh up the cost of these things and decide whether the science youíre gonna get out of it is actually worth the cost.  It was decided, and I think rightly, that for the LHC, the answer to that question is yes.  It will be that that decides whether the next one is built.

Multimedia

Subscribe Free

Related Content

Not working please enable javascript
EPSRC
Powered by UKfast
STFC
Genetics Society
ipDTL