Science Questions

Is everything in space spinning in the same direction?

Mon, 18th Apr 2016

Listen Now    Download as mp3 from the show What happened to Tutankhamun's heart?

Question

Loyiso asked:

Do the bodies floating in space - be they stars, planets of whatever - have different spinning directions - that is are some spinning clockwise and others ant-clockwise while some are doing up down type of spinning orientation? Or is everything spinning in the same direction?

Answer

Kat Arney put this question to Cambridge astronomer Matt Middleton...solar system

Matt - Okay.  So the basis of this is conservation of angular momentum, which most of us will probably be familiar with if we watch Tom Daly dive, and hopefully win gold at Rio.

Kat - It’s all about the angular momentum, obviously…

Matt - Is it really.  So, as a diver, be it Tom Daly or any of the other favourites, tucked in they spin around faster, if they open up they spin around slower, so thats conservation of angular momentum in action.

Chris - The other example is a ballerina…

Matt - A ballerina is a really good example...

Chris - A ballerina or an ice skater when they’re doing a pirouette…

Matt - Chris, whatever you’re the biggest fan of really.

Kat - Anyway, back to the physics.  We've got things spinning round…

Chris - Other heavenly bodies to talk about out in space Matt, yes…

Kat - So we’ve got stuff like spinning round?

Matt - Yes, okay.  So a star forms from something called a protostellar disc.  So you have a molecular cloud - these big things everyone’s probably seen pictures of something like the Horsehead Nebula.  These beautiful massive columns of gas and then, eventually, a star will form when the gas cools and it actually begins to rotate.  When it begins to rotate it actually flattens and forms a disc and in the centre you’ve got a newborn star. That disc is rotating and it’s going to be rotating in the same direction that the star is rotating because you're conserving angular momentum.

Kat - What makes it start rotating in the first place.  Is it just like whatever random wobble is there?

Matt - It’s random motions that start because you start hitting things over and over again.  They all start moving with the overall angular momentum.

Chris - It’s like the average.  That all the particles that come to the party to make the star, they add all of their own bit of spin and the average, when you sum it all up, some going one way, some going the other, will end up being in one direction, another band...

Matt - It all part of that collapse and that movement is a … yes.

Kat -   But within that kind of solar system would all the planets be spinning the same way? And what about our own solar system - is everything spinning the same way in our own solar system?

Matt - So many questions.  Okay. So, this disc of gas it cools, it forms planets.  They have their own little discs and therefore they’re going to be travelling in the same direction.  So, in a perfect scenario you’d have a star in the middle rotating in one direction.  The planets will then also all be going round in the same direction, the same direction that disc was going and the planets will also be spinning in the same direction as the central star.  But - and I can use Chris as this.  Chris look at me.  Okay.

So for me, I’m rotating this clockwise but what direction does it look like for you?

Chris - Well you’re turning a biro over and over in you hand and you’re saying…

Matt - It’s not a biro it’s an ink pen.

Chris - Okay and ink pen.  You’re turning it over and over in your hand - for you it’s clockwise for me it’s the other way round.  It looks like it’s turning anticlockwise.

Matt - So the way it looks to us is just a matter of perspective. To say that everything is spinning in the same direction, it doesn’t really have any meaning.  You have to put it in the perspective of the observer.  But going back to our own solar system, there are, in fact, two planets that do not spin in the same direction - Venus and Uranus).  We believe that they’ve just encountered another body…

Kat - Kind of like billiard ball smacking together?  They’ve then spun off the other way round?

Matt - Yes.  So, Uranus actually spins almost on it’s axis and Venus spins in the other direction and so they may have well encountered in the very early period of our solar system another body may have struck it, it’s transferred angular momentum, it’s now spinning in a different direction. So certainly in our own system there’s evidence that things don’t have to spin in the same direction.

Kat - Fair enough...

Multimedia

Subscribe Free

Related Content

Comments

Make a comment


No. Two cases come to mind:

1) The entire Uranus system - planet, rings and moon orbits - is tipped on its side comparted to the rest of the planets.
2) The orbit of one of Neptune's moons, i.e. Triton, is backwards.
PmbPhy, Wed, 13th Apr 2016

It appears to me that from photos or extra-galactic space, other galaxies have a great variety of axial directions. Atomic-S, Fri, 15th Apr 2016

Yes, everything rotates counter-clockwise.
Even the hands of a clock. You just have to look at them from the back of the clock.

The question isn't answerable unless you can decide which is the "right " side to look at. Bored chemist, Tue, 19th Apr 2016

Satellites that spin or orbit on planes counter to their host COM (center of mass) object spin incur tidal forces which decay orbit.  Satellites that find themselves in such orbits become additional mass faster than satellites in coordinated spin orbits of the host COM. 

Satellites can counter the host spin, to a degree.

The body with the most mass wins the argument.

Neptune's moon Trition is the only moon in our solar system with a retrograde orbit.  Its due to become additional mass of Neptune before other moons in the neighborhood.

Uranus is so far from the sun, it's tilt will take a long time to come to alignment.  But it seems to be working on it slowly...  It takes 84 Earth years for Uranus to orbit the sun once...  It's in little hurry to agree with the rest of the planets about the preferred plane of things. JoeBrown, Thu, 21st Apr 2016

See the whole discussion | Make a comment

Not working please enable javascript
EPSRC
Powered by UKfast
STFC
Genetics Society
ipDTL