The Naked Scientists

The Naked Scientists Forum

Author Topic: Why don't an atom's electrons fall into the nucleus and stick to the protons?  (Read 171222 times)

Offline yor_on

  • Naked Science Forum GOD!
  • *******
  • Posts: 11993
  • Thanked: 4 times
  • (Ah, yes:) *a table is always good to hide under*
    • View Profile
 

Offline jccc

  • Hero Member
  • *****
  • Posts: 990
    • View Profile
 
This is my own atomic structure theory. I think the space is negative charged elastic fluid . A positive particle such as proton will attract space to form a negative ball field around it. When an electron closing to a proton, this ball field pushes it away. The balance point is the diameter of the atom. Electrons does not fly around nuclear but bond by the ball field and proton forces. Since the space itself is charged, it conducts electromagnetic force such as light waves. Light wave is coming from electron vibrating in space.
 

Offline jccc

  • Hero Member
  • *****
  • Posts: 990
    • View Profile
This magnet toy is a good demo for a hydrogen atom.
aid=P8fZ2oSGqsg
 

Offline PmbPhy

  • Neilep Level Member
  • ******
  • Posts: 2762
  • Thanked: 38 times
    • View Profile
Quote from: Sarah Raphaella
I know that protons are positively charged, neutrons are neutral, electrons are  negatively charged and that atoms are mostly empty space. I also know for magnets opposites attract. … So why don't electrons stick to protons instead of flying around the nucleus?
The laws of physics at the atomic level is based on what is known as Quantum Mechanics and not on the physics that you’ve probably only learned to date, i.e. Newtonian Physics which is now known as Classical Mechanics. In the case of the atom, electrons can only exist in certain states. In those states the electrons don’t move on classical trajectories, as you might otherwise think of them moving. They are found in regions of space according to what we call the Wave Function. For the hydrogen atom the wave function contains everything that can be known about the state of the electron in the hydrogen atom. The square of the magnitude of the wave function is the probability density which is used to determine the probability of finding the electron in a particular region of space. Described in this way electrons don’t move the way you’d expect them to using classical physics. The states that the electrons can exist in are described by the wave function. For each allowed state there is an associated wave function known as an eigenstate. Each eigenstate is defined by certain numbers called quantum numbers. These numbers describe things like energy, angular momentum, spin, etc.. In chemistry these eigenstates are referred to as an Atomic Orbital. You can read about them online at
http://en.wikipedia.org/wiki/Atomic_orbital

The shapes of these orbitals are shown in this link. For the lowest energy level the electron can actually come as close to the nucleus as it wants to. I.e. the probability density at r= 0 is non-zero.

Quote from: Mr. Scientist
It has to do with the uncertainty principle. …I am sure Hawking himself said the Uncertainty Principle had something to do with it.
That is incorrect. The reason is as I just described it. The reason is not for the reason you give. Also it’s quite wrong and contrary to quantum mechanics to assert that electrons “must occupy every other space within the atom.” Such a thing is quite wrong in quantum mechanical terms. No electron can be said to exist in more than one place at one time. No electron can even be said to be at a place unless its position is measured and the electron is found to be there. And no. Hawking would not say such a thing. However I do agree that the Pauli exclusion principle has nothing to do with (and it’s called the “exclusion” principle, not the “expulsion” principle).

Quote from: Vern
The present state of physical science does not allow "why" questions.
[/quote
That is incorrect. When someone asks a question whose answer is a description in terms other than stating postulates then science can indeed address “why” questions. For example: the question Why is the sky blue? has a very definite answer to it.



Nasa Answers the question Why Is the Sky Blue at
http://spaceplace.nasa.gov/blue-sky/en/
Quote
Sunlight reaches Earth's atmosphere and is scattered in all directions by all the gases and particles in the air. Blue light is scattered in all directions by the tiny molecules of air in Earth's atmosphere. Blue is scattered more than other colors because it travels as shorter, smaller waves. This is why we see a blue sky most of the time.
and this answer is far from being speculative as you claim it must be.


Quote from: Vern
If you like to think that Quantum theory represents reality you have to invent excuses.
Nonsense.

Quote from: Vern
Quarks can not exist outside nuclei, for example. Electrons dance to the uncertainty tune, etc. To me it is much easier just to accept reality as it presents itself.
Those aren’t excuses. And we do things because of their logical consistency, correspondence with experiment, etc. Not because we want things to be “easy.” If you want easy become an auto mechanic.

Quote from: Vern
But we really don't.
Wrong. We absolutely do.

Quote from: Vern
I started looking for experimental evidence for wave function collapse years ago.
Any physicist worth his salt could have and would have told you that such a search is a waste of time. The wave function and the notion of the collapse of the wave function are merely mathematical intermediaries, not physical entities. E.g. we don’t measure the wave function in the lab. We don’t directly measure a probability either. What we measure are things like The particle detector at (x=2, y=4) “clicked” and thus registered the presence of an electron at 3:33:29pm. We keep repeating that kind of thing and then add these numbers up. We then calculate a probability density. Etc.

Quote from: Vern
I'm still looking. None found.
If that’s true then it’s because you didn’t understand the theory and thus didn’t know what to look for or how to look for it. We can certainly observer nature and conclude that nature is consistent with the concept of wave function collapse.

Quote from: Vern
We have a habit of reporting our conclusions as experimental results.
[/quotes]
Who is “we”? I know of nobody that ignorant.


 

Offline PmbPhy

  • Neilep Level Member
  • ******
  • Posts: 2762
  • Thanked: 38 times
    • View Profile
Quote from: evan_au
The short answer is that a "proton and electron stuck together" does happen, in a neutron.
That is quite incorrect. The neutron cannot be thought of that way, It can be shown that an electron cannot exist inside a neutron and exist as a neutron/electron system. I can't  recall where I came across that fact but no matter. It's a well-known fact. I had to prove it as part of my studies of quantum  mechanics.
 

Offline chiralSPO

  • Global Moderator
  • Neilep Level Member
  • *****
  • Posts: 1878
  • Thanked: 144 times
    • View Profile
Quote from: evan_au
The short answer is that a "proton and electron stuck together" does happen, in a neutron.
That is quite incorrect. The neutron cannot be thought of that way, It can be shown that an electron cannot exist inside a neutron and exist as a neutron/electron system. I can't  recall where I came across that fact but no matter. It's a well-known fact. I had to prove it as part of my studies of quantum  mechanics.

There is no discrete electron-proton pair within a neutron--it is a single particle. However a neutron is the result of a proton "capturing" an electron: p+ + e →  n  +  νe
 

Offline alancalverd

  • Global Moderator
  • Neilep Level Member
  • *****
  • Posts: 4714
  • Thanked: 154 times
  • life is too short to drink instant coffee
    • View Profile
The fact that atoms don't collapse just shows that the classical electron-proton model is inadequate. There is no "why" in nature: stuff happens, and the best we can do is to generate predictive models of what happens. The classical model of electrostatics works pretty well for widely separated charges but just doesn't describe the behaviour of electrons in an atom - and there's no reason why it should.

The test of quantum theory is whether it describes what we see at a very small scale, and reduces to the classical continuum description at the mesoscopic scale: and it does. The reverse test, attempting to describe small objects form the behaviour of large ones just doesn't work.   
 

Offline PmbPhy

  • Neilep Level Member
  • ******
  • Posts: 2762
  • Thanked: 38 times
    • View Profile
Quote from: chiralSPO
There is no discrete electron-proton pair within a neutron--it is a single particle.
Not according to the Stadard Model. In particle physics the neutron is not a single particle but a system of three particles calledquarks of which there are several types. The neutron is composed of two down quarks and one up quark. When Murry Gell-Mann developed the theory of quarks it was just a nice gimmick to help describe what was being observed. Later on Gell-Mann decided to accept the reality of them as being "real" particles. Deep inelastic scattering shows that in the case of the proton the evidence suggests three lumps of charge instead of one. This is strong support for the quark model.

See see http://en.wikipedia.org/wiki/Neutron

Quote from: chiralSPO
However a neutron is the result of a proton "capturing" an electron: p+ + e →  n  +  νe
Just because a proton can be created that way it doesn't mean that's the only way and it doesn't mean that's what a neutron "is." There are other ways to create neutrons. It is therefore wrong to identify a neutron as "that which results when a proton captures an electron."
 

Offline PmbPhy

  • Neilep Level Member
  • ******
  • Posts: 2762
  • Thanked: 38 times
    • View Profile
Quote from: jccc
Let's pretend Enertron is real, ...
That's equivalent to saying []Let's pretend that nature does not behave the way that we observe that it does and see what happens.[/i] That can result in anything that you'd like because what you're describing goes by another name, i.e. magic.

Magic is like anything that you'd like it to be so you're now free to create anything that you'd like. Have fun.
 

Offline PmbPhy

  • Neilep Level Member
  • ******
  • Posts: 2762
  • Thanked: 38 times
    • View Profile
Quote from: jccc
Enertron should play a roll in many things including energy transfer, energy density, temperature etc,.
Why?

Each particle that exists is able to exist because it has all the properties which allow it to exist according to the laws of physics. Now you come along and say "The Enertron particle exists." which quite literally means that it exists outside the range of normal experience. That’s the ramification of assuming what you’re telling us to assume. Do you know what that’s called? I.e. do you know what we call a phenomenon that exists outside the range of normal range of experience? It has a very particular name. It’s know as the Paranormal. See http://en.wikipedia.org/wiki/Paranormal

Magic is the attempt to control or otherwise work with the paranormal. See
http://en.wikipedia.org/wiki/Magic_(paranormal)

Quote from: jccc
Open mind, watch and think, predict and test. Isn't that science?
If you’re doing it with respect to those things that exist in nature than it’s called science. If you’re creating things out of thin air which in doing so violate the laws of nature by their very existence then no. That’s not science. That’s magic.

Quote from: jccc
I suggest a model …
No you didn’t. At least not yet. All you said was Let's pretend Enertron is real,.. which is the furthest thing from a model that you can get.

Quote from: jccc
...to explain atomic structure, created enertron sub particle idea, not magic. Not as magicle as QM.
There’s nothing in any of your recent posts which explains anything, never mind atomic structure. You never created an “enertron”. You merely pretended it existed. When you did so and did so outside the laws of nature then you’re talking about the paranormal.

Please find a dictionary and look up the term “paranormal.”

Perhaps you have no training whatsoever in particle physics. If so then that’d explain a few things. Particle physics is a theory of elementary particles. It tells us what particles can exist and what the properties of those particles are. In this thread I’m assuming the idea situation by which there exists a theory of particles whose properties we fully know. Also in this thread I’m assuming that the theory which we’re assuming that we have is able to fully account for the existence of all particles that either exist now or can be created. I’m also assuming in this thread that this “enertron” is something you dreamed up which is something which is not on any list of currently known particles. If it is then please tell me where to find the list on which this particle exists.
 

Offline PmbPhy

  • Neilep Level Member
  • ******
  • Posts: 2762
  • Thanked: 38 times
    • View Profile
Quote from: jccc
I haven't think out a way to detect it to proof or disproof its existence, can you help?
You'd do it the same way that you'd prove or disprove the existance of unicorns.

Quote from: jccc
Physics laws are created by men, men don't create particles.
What's your point? The laws of physics are indeed created by man but they describe nature whose existance man does not dictate.

Please do yourself a major favor. Study the following articles very carefully;

http://home.comcast.net/~peter.m.brown/ref/philosophy_physics.pdf
http://home.comcast.net/~peter.m.brown/ref/what_is_science.pdf
« Last Edit: 07/06/2014 04:37:01 by PmbPhy »
 

Offline JP

  • Neilep Level Member
  • ******
  • Posts: 3366
  • Thanked: 2 times
    • View Profile
You didn't come out anything you knew besides from books.

Can you proof enertron is not there? How you explain electrons not stick to proton?
Wait few more years, learn more new theories and discoveries. Science is advancing.

Since this is a science forum, we're all here to discuss what science currently knows.  If you'd like to discuss what you think might be discovered in the future, please keep the discussion to the New Theories forum.
 

Offline jccc

  • Hero Member
  • *****
  • Posts: 990
    • View Profile
Quote from: Sarah Raphaella Rodgers
So why don't electrons stick to protons instead of flying around the nucleus? Magnets do it, so why can't atoms?
The present state of physical science does not allow "why" questions. Any answer will have to be speculative.

Why not? Science should be always allows why questions?
 

Offline alancalverd

  • Global Moderator
  • Neilep Level Member
  • *****
  • Posts: 4714
  • Thanked: 154 times
  • life is too short to drink instant coffee
    • View Profile
Why not? Science should be always allows why questions?

No. "Why" implies an ulterior purpose. There is no evidence of one, nor that fundamental particles have any knowledge of such a purpose. Purpose is a construct of living things, not a property of their constituent atoms.

Science is concerned with "how" - though biologists may occasionally ask "why" as long as they are wary of excessive anthropomorphism. Hence the truly scientific answer to why the chicken crossed the road.
 

Offline JP

  • Neilep Level Member
  • ******
  • Posts: 3366
  • Thanked: 2 times
    • View Profile
Science is all about applying the scientific method to come up with models of nature.  The key term (for this discussion) is models.  Science doesn't deal with coming up with a fundamental "real" cause for everything.  All we as scientists can do it to come up with accurate models and then leave it to philosophers to argue over whether the model itself is reality or whether it is simply a model of some deeper underlying reality. 

The problem with posting ideas like "I think an electron can stick to a proton" is that there is no science to back that up.  It may or may not be a good idea, but unless you can show:

a) The theory is consistent with other existing measurements
b) The theory is testable and falsifiable

It is not even on the track to being a scientific theory.
 

Offline jccc

  • Hero Member
  • *****
  • Posts: 990
    • View Profile
I never posted ideas like "I think an electron can stick to a proton".

I posted ideas like this.

"If the speed of force is c, then the speed limit is c.

A 100 miles per hour train cannot push a man move faster than 100 miles per hour.

The force we use is electromagnetic force, its speed is c. Therefore, we can never travel at light speed."

What's your comment? Do you think force has a speed?
« Last Edit: 07/06/2014 09:00:14 by jccc »
 

Offline JP

  • Neilep Level Member
  • ******
  • Posts: 3366
  • Thanked: 2 times
    • View Profile
Force is caused by a change in momentum which is in turn caused by the exchange of particles or fields.  The speed at which one object can exert a force on another is determined by the speed of those particles or fields.  The upper speed limit to anything we know of is the speed of light, since both fields and particles obey special relativity.  Of course, forces can travel slower.

So no, there is no "speed of force."  There is speed of objects which can transfer momentum.
 

Offline alancalverd

  • Global Moderator
  • Neilep Level Member
  • *****
  • Posts: 4714
  • Thanked: 154 times
  • life is too short to drink instant coffee
    • View Profile

I am very confused. Isn't Newton ask why apple falls so to discover gravitation? Isn't scientist ask why there is red shift so to make big bang theory?

Why can't we ask why to any thing we don't understand?

Seriously, what is science all about?

You can indeed ask why, but the best a scientist can tell you is how.

I am being very pedantic, but for a good reason: words in science all have very precise and noninterchangeable meanings. To a journalist, force, energy and power are all the same thing but they are entirely different in physics, and the difference is crucial to understanding and describing how things work.

It is arguable that Newton was still labouring under the illusion of a created universe with a purpose, and his work certainly predated the word "scientist" which was invented in 1833. It has been suggested that belief in a purposeful creator was the reason why natural philosophers  like Newton sought rational and consistent explanations, hence the theistic "why" was entangled with "how" in their minds, and actually laid the foundation for systematic investigation of what was presumed to be a systematic universe. But an atheistic view cannot assume an ultimate purpose, indefinitely consistent systematics, or that common logic, applied ad infinitum, will explain everything: you may have to accept from time to time that "that's just the way it is", and that certainly applies to quantum mechanics. 

So we observe red shift and ask how it can be explained. You can look at the known phenomena of doppler shift and general relativity, and deduce that distant objects in general are moving away from each other, which suggest that at some time they were closer together (or that space was smaller) hence there must have been a starting point before which the universe bore no resemblance to its present state. No "why" because no need for an ultimate purpose - it just is, and apparently was, so let's untangle the mechanism of "how" it got from there to here.   
« Last Edit: 07/06/2014 10:24:48 by alancalverd »
 

Offline PmbPhy

  • Neilep Level Member
  • ******
  • Posts: 2762
  • Thanked: 38 times
    • View Profile
Quote from: alancalverd
You can indeed ask why, but the best a scientist can tell you is how.
I used to think that was true but experience has shown me that it's not. After I took the time to sit down and look at all the questions that scientists have been asking and answering over the last hundred years I came to see how wrong I was and how wrong your assertion is. And I'm far from being the only physicists to think so too.

From The Inflationary Universe by Alan H. Guth. On page ix, the Foreword, written by Alan Lightman, reads
Quote
In the 1970’s, the study of cosmology went through a major conceptual change. Prior to this time, modern cosmologists asked such questions as; What is the composition of galaxies and where are they located in space? How rapidly is the universe expanding? What is the average density of matter in the cosmos? After this time, in the “new cosmology,” cosmologists began seriously asking questions like: Why does matter exist at all, and where did it come from? Why is the universe as homogenous as it is over such vast distances? Why is the cosmic density of matter such that the energy of expansion of the universe is almost exactly balanced by its energy gravitational attraction? In other words, the nature of the questions changed. “Why?” was added to “What?” and “How? and “Where?”. Alan Guth was one of the young pioneers of the new cosmology, asking the Whys, and his Inflationary Universe theory provided  many answers.

Quote from: alancalverd
So we observe red shift and ask how it can be explained. You can look at the known phenomena of doppler shift and general relativity, and deduce that distant objects in general are moving away from each other, which suggest that at some time they were closer together (or that space was smaller) hence there must have been a starting point before which the universe bore no resemblance to its present state. No "why" because no need for an ultimate purpose - it just is, and apparently was, so let's untangle the mechanism of "how" it got from there to here.   
Please don't take this the wrong way, but I hope that you're not trying to discourage people from asking questions in a way that feels natural to them. People want to know why certain things are the way they are. E.g. if somone wishes to ask "If the entire floor in my house has the same temperature then why does the ceramic tiled floor of the bathroom colder than the wooden floor in the kitchen?" then you shouldn't try to get them to change the way they phrase it because it has a very simple answer.

The flaw in your argument is that you're only using examples which are consistent with your assertion and are igoring those which demonstrate that you're wrong. If you used the questions that Alan Guth was asking during the research which led to the inflationary theory of the universe then your argument falls apart.

I gave an example of a "Why" question recently in this forum - Why is the sky blue? is a very legitimate question which has a very direct and valid answer. The question which started this thread is also a valid question which also has a very direct and valid answer which I also gave.

Take a look at all the usolved problems in physics at
http://en.wikipedia.org/wiki/List_of_unsolved_problems_in_physics

Notice how they're phrased:
- Why is the distant universe so homogeneous when the Big Bang theory seems to predict larger measurable anisotropies of the night sky than those observed?

- Why aren't there obvious large-scale discontinuities in the electroweak vacuum if distant parts of the observable universe were causally separate when the electroweak epoch ended?

- Why is there far more matter than antimatter in the observable universe?

- Why does the zero-point energy of the vacuum not cause a large cosmological constant?

- Why is the energy density of the dark energy component of the same magnitude as the density of matter at present when the two evolve quite differently over time;

- Why does the predicted mass of the quantum vacuum have little effect on the expansion of the universe?

- Why is gravity such a weak force? It

- Why are there three generations of quarks and leptons?

etc

There are basically two different kinds of "Why?" questions. There are the kinds which are seeking deep spiritual meaning like "Why am I the person I am rather than someone else?" or "Why did I have to get cancer?"

See - http://www.merriam-webster.com/dictionary/why

The kinds that science can address are those of "cause." The kind that science cannot answer is "reason." Therefore

Science can answer the question - "What causes the sky to be blue?"

Science cannot answer the question - "What is the reason that the sky to be blue?" if by "reason" one is asking why "God" didn't make the sky red or purple
« Last Edit: 07/06/2014 18:03:09 by PmbPhy »
 

Offline lightarrow

  • Neilep Level Member
  • ******
  • Posts: 4586
  • Thanked: 7 times
    • View Profile
After 4 pages of discussion, I still don't understand this question - Why don't an atom's electrons fall into the nucleus and stick to the protons?

Please someone help me to understand, or let me know where else to find answer.
And I don't understand why you don't want to understand that electrons in an atom are not little balls and so to describe their behaviour you have to use quantum mechanics.

--
lightarrow
 

Offline evan_au

  • Neilep Level Member
  • ******
  • Posts: 4123
  • Thanked: 245 times
    • View Profile
how can they not attract each other and stick together?

A very crude analogy: Imagine you had an airport, with a slight indentation down towards a drain hole that is perhaps 1 inch across.
- If you place a jumbo jet on this indentation, will it be attracted towards the drain-hole? Yes, because there is an energy gradient.
- Why doesn't the jumbo jet stick there? It will stick there, unless a greater external force moves it away.
- Why doesn't the jumbo jet go down the drainhole? It's too big, and it takes a considerable amount of energy to squash it down and turn it into a drainhole plug.
« Last Edit: 03/07/2014 17:29:48 by evan_au »
 

Online jeffreyH

  • Global Moderator
  • Neilep Level Member
  • *****
  • Posts: 3920
  • Thanked: 53 times
  • The graviton sucks
    • View Profile
The short answer is that a "proton and electron stuck together" does happen, in a neutron.

However, a neutron is unstable, and will break down in about 15 minutes, releasing an electron (beta particle) and proton, plus a ghost-like particle called a neutrino. This decay releases a lot of energy. So, a hydrogen atom (=proton+electron) is much more stable than a isolated neutron.

Neutrons can be stable, if they are combined into an atomic nucleus with protons in the right ratio. In this case, the strong nuclear force provides the binding force to keep the nucleus stable.
  • Too many neutrons, and one could decay (releasing an electron, as described above)
  • Too few neutrons, and an inner electron can be captured, forming a neutron, just as you asked
  • There are other nuclear decay paths too; for more details: http://en.wikipedia.org/wiki/Stable_nuclei

I have only just picked up on this thread and haven't read it all the way through. The fact that we can even have a particle like the neutron shows that the electron can become part of the nucleus. However as this requires energy the electron cannot become part of a proton so is forced to orbit due to the spin of the proton and the spin of the electron. If it had enough energy it would form a neutron. However if this were easier as in a property defined at the big bang every particle would be neutral and no solid matter would form as atoms would not exist. The question should not be why doesn't it fall into the nucleus but why doesn't this combination more easily form neutrons. It actually has fallen as far as it can towards the nucleus.
 

Offline evan_au

  • Neilep Level Member
  • ******
  • Posts: 4123
  • Thanked: 245 times
    • View Profile
The energy involved in electrostatic interactions between electrons and protons is around a few electron-Volts - the level of energy that is involved in chemical reactions.
The energy involved in the nuclear force between protons or protons & neutrons is typically around a million times stronger, at Mega-electron-Volts.

So it takes an immense amount of energy to get electrons to interact with a nucleus - an amount of energy that cannot come from normal chemical reactions. For humans to achieve such an interaction, the energy would have to come from a high-powered particle accelerator.

There is another source of the necessary energy - a nucleus which is already severely stressed by having too many protons for the number of neutrons - this stress represents MeV of potential energy. There is a very small probability that such a nucleus will capture an electron, releasing the pent-up energy in a neutrino, to balance the necessary nuclear equations.

So three reasons protons don't routinely capture electrons:
- Electrons have far too little energy (by a factor of a million or so)
- Fundamental properties must balance before and after the interaction, which does not happen without production of an energetic neutrino.
- This interaction involves the weak nuclear force, which means it can take a long time...
 

Offline acsinuk

  • Sr. Member
  • ****
  • Posts: 236
  • Thanked: 1 times
    • View Profile
    • electricmagnofluxuniverse.blogspot.com
"So three reasons protons don't routinely capture electrons:
- Electrons have far too little energy (by a factor of a million or so)
- Fundamental properties must balance before and after the interaction,"
 Evan you are refering to energy balance but the only stuff inside a molecule is the electrostatic charge and magnetic forces and these need to balanced.
As the inside of the molecule must balance perfectly electrically; a strong nuclear force of 10^38 G will be needed to force the like charges in the proton bundles together. Same force applies to the neutron bundle as well.  The proton bundle must be pushed away from the neutron bundle electro-magnetic by an EMF curling force of 10^ 36 G which also pushes away the electron enclosure.  As the normal repulsion of same charges force is weaker at 10^ 25 G ; this pushes the complex molecules proton bundles away from the other compound proton bundles thus the molecule is electrostatically and electromagnetically stable.
CliveS
 

Online jeffreyH

  • Global Moderator
  • Neilep Level Member
  • *****
  • Posts: 3920
  • Thanked: 53 times
  • The graviton sucks
    • View Profile
This brings up a question about neutron stars. Do they have a magnetic field? If so then is it simply electrons that cause it? The neutrons being neutrally charged are unlikely candidates. This would make the field mono-polar.
 

The Naked Scientists Forum


 

SMF 2.0.10 | SMF © 2015, Simple Machines
SMFAds for Free Forums