*We answered this question on the show...*

*Matt* - Let’s see if we can work this out fairly quickly. If you start playing when you're 16 and you cease playing when you're 86, is that reasonable? It will give us 70 years of non-stop playing. So that’s about one hundred games per year. So, you'll end up doing about 7,000 games across your lifetime. What you need to do is, if it’s originally 1 in 14 million, we’ll divide that by the 7,000 games you're going to play because you'll have 7,000 chances to win and you end up with 2,000. So, you need to have 2,000 lifetimes to *expect* to win the lottery.

*Trevor* - That’s more alarming I think and then actually saying 14 million to 1, so I’ll enjoy sharing that in work tomorrow. The second part is also to do with the lottery. If you do the numbers 1 - 6 in the lottery. I think people who do that are being silly on the basis of the first 3 balls come out and on the night and it’s say, number 1, number 2, number 3, the chances of 4 to 10 coming out next diminishes. Is that the case?

*Matt* - If you look at the lottery as a whole, from before you start pulling out the balls in the particular draw, any list of numbers you pick is equally likely. So you can pick 1, 2, 3, 4, 5, 6. You can pick random numbers like 12, 37, 14, or other random numbers - every single string of numbers has exactly the same chance of coming up. What you're saying now is, once you start drawing the balls out, how does the probability change? What people often forget with things in probability because as humans, we love to assign meaning and pattern to things, is that if you draw out one number, it doesn’t change the odds of the next number at all, other than you can't draw the previous number that just came out. So actually, your odds aren't going to change as you're drawing those numbers out as you go along.