3D-printed rabbit with its own DNA blueprint

17 December 2019

Interview with 

Robert Grass, ETH-Zurich

Share

Scientists have created a DNA sequence containing the computer code for 3D-printing a plastic rabbit. But in an even more cunning twist, they've developed a way to enclose the DNA inside microscopic glass beads that can themselves be mixed into the plastic used to print the rabbit. In this way, just as biology endows each of our body's cells with the molecular recipe for a human, every part of their plastic rabbit contains the DNA code to make a replica. And by chipping off a bit of its ear, extracting the DNA and decoding the instructions, it was possible to 3D print 5 generations of rabbits. Amalia Thomas heard from the study's author Robert Grass how they did it...

Robert - So what we've done is that we've shown that we can store digital information in everyday objects,  and we use DNA as a data storage medium to do that.

Amalia - What do you mean by DNA? Do you actually mean what's inside our bodies?

Robert - Exactly. So we use exactly the same molecule as biology uses to store our own blueprints, but we don't use natural DNA. But we have the DNA chemically synthesised in the sequence, we design it for.

Amalia - How much information can be stored in DNA.

Robert - So theoretically you can store tremendous amounts of information in DNA. Probably all the information we have in the world would fit into a few grams of DNA. What we do, we put the DNA into objects and you could put really, really large amounts of digital information into everyday items.

Amalia - So how did you do this? What technique did you apply to store information as DNA in an everyday object?

Robert - To do this, we have to first translate the information to DNA. For that, we have an encoder that was developed by my collaborator Yaniv Erlich. He's an expert in doing this translation of digital information to, let's say DNA sequences. We then have these DNA synthesised by a company that makes DNA , but you can't just mix it with polymers, because DNA doesn't mix with polymers. The DNA would not be phase stable. To get around those problems, the DNA, we encapsulate it, it's a small glass capsules, which are just a hundred nanometers in size. When we put the DNA in, this glass capsules, it's protected from decay and we can mix it easier with polymer solutions. So once we have the DNA in these particles, we mix the particles with the polymer solution, solidify the polymer, and then the polymer contains the particles, containing the DNA,  containing the digital file.

Amalia - Could you give us an example?

Robert - The examples we really did, is 3-D printed objects, which contain their own building instruction or blueprint within this 3-D printed item. So one of the most common 3-D printed parts people make, is called the Stanford bunny. So we have this 3-D information of the bunny as a digital file, which we use to print a bunny. But at the same time we take this digital file, we translate it to DNA and infuse that DNA into the polymer from which we printed the bunny, so that the bunny then contains its building instructions as DNA in the final item, and so what you can do, you can take a piece of the bunny, read the 3-D file which was made from the DNA, and use that to make more clones of that original bunny. So far we've done five generations, but we could go to significantly more bunny generations and they would still be perfect clones of the original bunny we had made.

Comments

Add a comment