Heart transplants: the cutting edge

13 June 2016

Interview with

Stephen Large, Papworth Hospital Cambridge

 Heart failure is when the heart simply can't pump enough blood around the body,Two hands forming a heart shape and it's so prevalent it costs 2 percent of our GDP! Transplants come from people who are brain dead, with permission of the families, and taken off life support. Stephen Large, a surgeon from the world-leading transplant centre, Papworth Hospital in Cambridgeshire, may have discovered something which might improve people's chance of getting thrown this lifeline in the first place.

Stephen - We look at heart failure in sort of stages if you will, and we're looking at patients for heart transplantation who are stuck in the severe category of heart failure. So they're breathless at rest or they're persistently tired. Their exercise ability is very, very limited; their lives are so contained, dreadfully contained by the restrictions of their heart failure, they're pump failure, despite best medical therapy, and those are candidates for transplantation. And, of course, we find that the younger people tend to do better with transplantation than older folk, which is a little ironic because heart failure is an age-related issue. We heard today in this conference, 20% risk of heart failure developing in those over the age of 65, and that's a daunting prospect as you approach 65 - not great.

Georgia - In terms of actually taking the heart out of someone who no longer needs it, I suppose, and putting it into someone who does. This sound incredibly difficult. How long have we been able to do this and what are the success rates?

Stephen - Well, I was a secondary school student when this whole area exploded and, of course, Christian Barnard hit the press in '67 with his transplantation of Wychenzky. There was a big flurry of transplantation after that and folk didn't understand really the ups and downs of immune suppression because, of course, you have to damp down the recipient of the heart's immune system, otherwise they'll reject it, like any foreign protein. So we have to get the patients to have immune suppression so they tolerate the new heart and it keeps them going, and very effectively so too. As we saw again from statistics today, survival moving from a 50/50 chance of those with severe heart failure of 1 year to 50/50 survival after transplantation of 13 years, which is amazing, absolutely incredible therapy. And not just survival but, of course, a quality of life benefit hugely impressive.

Georgia - So how does one of these transplants work? Well, last year, BBC Radio 5 Live made history and did a live recording from one of these operations, and we've got a clip here that give you a small idea of just how incredible these procedures are...

Chris - So this is my first look proper into the operating theatre and you can see Steve's head right in front of me just coming out of the top of the bed. Various tubes connected to the top of his head and coming out of his mouth as well. And if I just come over to my right as well, pretty much the most important machine in here which is effectively doing the job of Steve's heart, working out the circulation of Steve's blood around his body whilst his heart can no longer do so. One, two, three surgeons right next to Steve and  doing all of the main work, and then we have a perfusionist here who's operating that machine I was talking about that's doing the work of Steve's heart, and then the anaesthetist just to the left as well. And they know that they've got a long road ahead.

Let's have a quick word with Laura who is the transplant coordinator. So just tell us where we are at the moment because they've been working for some time already? What stage are we at here?

Laura - We're at the stage where we're preparing to explant the heart here from Steve, so he's on the bypass machine now. So Mr Howell is just loosening the heart and preparing to take it out properly and in the background we are waiting for his new heart to be delivered to us. So we've got the timings quite strict and we're hoping that will happen within the next half an hour.

Chris - And when you say the timing's quite strict. I mean it's actually incredibly tight isn't it? It's effectively a race against time?

Laura - Yeah. It's a four hour window that we have when we stop the circulation and the blood supply of the old heart and transport it on ice and need to be reperfused in Steven's  body. So it's crucial and, obviously, you've got  transportation time to factor into that as well.

Chris - Just as a reminder, at this moment in time, we're heading to a critical stage here, aren't we now?

Laura - Yes, it's crucial now because we're getting anxious that the heart will be on it's way to us and we need to make sure that we're ready because we just want to cut down the amount of time that the heart is on ice as much as possible.

Chris - Well the heart has just been taken out. I'm going to come round this way because the heart has just literally been taken out. You might have heard the surgeon, Neil Howell, just say the heart is out so that everybody in the room knows. And here it is on a table in a plastic bowl. It's quite a sight, it's quite a size, it's bigger than I would have thought, and it's just made a movement there completely independently from Steve's body as well. Now what they will be doing at the moment is preparing Steve's body for when the new heart arrives and in front of me, effectively, is a man who, at this moment in time, does not have a heart in him, which is quite a thing to consider. And also to look at what is now going to be his old heart in front of me and, again, as I look, it's still moving even though it's no longer in Steve's body, which is quite a thing to see and I've seen that happen about 6 or 7 times now. That will now go for various tests and now we await the arrival of the new healthy heart....

Neil Howell - how are things going here?

Neil - Well they're going pretty straightforward really. So you can just see in here at the moment when we look in, this is the cavity that's left by the heart being removed and you can see what a huge space there is there. And you can see down here we've got what we call the cuff, so this is the residual heart tissue, the residual blood vessels that we're going to sew the new heart into. We've got absolutely everything prepared, we're all ready. I've got my first suture already placed at the top of the left atrium so, the second the heart comes in, I can take it out, inspect it and start implanting it...

Chris - So the box has been opened. There's some paperwork and such like in the top and then it's full of ice. The ice being scraped back . Ice as you would picture it a cool box...

And one of the team here rooting through that ice. What's happening - what's it protected by?

Neil - Okay. So this is the standard way of protecting the heart when it's getting transplanted so it's triple bagged and literally just packed in ice. So this is when the coordinators get a little bit stressed and they don't like it. What they're doing is cutting through the first bag without trying to cut through the second or the third bag. And what they're going to do is they're going to open this up and then I'm going to reach my hands in into the sterile interior of this and I'm just going to lift the heart out. Then we'll move it to this bowl over here. So as soon as I see what I want to see which is that bit there and this goes into an empty bowl at this stage just because there's a lot of water.

Chris - What's the heart floating in there?

Neil - It's just some saline, so salt water

Chris - Picking the heart out there, orientating it around.

Neil - That's where it's going to sit so..

Chris - I mean this is absolutely amazing stuff to see. The work they're doing here where they're just treating this heart with great care but, at the same time, preparing it in order to put it in. So here we go then...

Neil - Okay, so first stitch goes in...

Chris - Just to tell our listeners now. Neil Howell has got his instruments deep into Steve's chest bringing the heart into that cavity that we talked about and now the heart's sitting inside there. As I said, that area about the size of a small football. Quite whitish walls around his chest and some more ice thrown into the area as well just to keep that heart as cold as possible even though it's now sitting loosely in Steve's body. And Mr Howell just trying to manipulate the heart to try and move it into the correct position. He's got both of his hands in Steve's chest now which he was talking about earlier...

Neil - What I'm trying to now is just open up because I'm doing a sort of upside down anastomosis right at the back of this guys chest . So what I need to be able to do is just to.. Thank you, trying to drop the instruments..  Is to try and now see what I'm doing because as I do this anastomosis I gradually see less and less of what I'm doing. I'm just trying to keep in the same position really. I'm just opening up the donor left atrial cavity so I can see where I am stitching. You know there's lots of old phrases in surgery and one of them is "if you can see what you're doing it's generally an easy thing to do." And half the problem, I think with surgery, is just not being able to see what you're doing half the time.

So the heart is no completely finished. You can see the heart's just starting to beat so we've connected half the joints and the heart's just starting to beat

Chris - Mmm. And that's quite a sight isn't it? From the heart being brought in completely still in ice and now we see the new heart inside Steve pumping. Pumping away.

Neil - It's not pumping. So it's not doing any work - it's beating.

Chris - It's beating. Yes, okay, I see the distinction.

Neil - At the moment there's not a lot of blood going to this heart because it's all going round Ruthy's machine. But it's starting to beat and that is a good sign.

Georgia - That was Chris Warburton following Steve's transplant. But people like Steve are often sat on the waiting list for donations for months, even years. Back to Stephen Large...

Stephen - The central issue here is really the huge imbalance between the supply of hearts for transplantation and the need for it. We're an ageing population, the need is going up, and the number of organs available is actually going down. Why? Because public health is so good. People are wearing crash helmets, they're driving at sensible speeds. It's a demonstration of fantastic outcomes from public health.

So we've been looking at alternatives. And so what we've been doing in Papworth is to ask the question, what about those poor folk who have no therapeutic outcome for their devastating brain problem and treatment is withdrawn at the relative's request and the intensive cares request. And for a number of years now those folk who have treatment withdrawn, their hearts stop and they have gone forward for organ donation.

And up until recently the question of using the heart from such donors hasn't been an issue but we've pushed and said these are appropriate hearts, and we've shown that in modeling in rat and a pig model, they're going to be very appropriate hearts. Perhaps even better than the current ones we use. And so we started a program after ten years of justification on the 28th February 2015. Hugely exciting and to date the country has transplanted 23 hearts. The majority at Papworth and 4 from our sister hospital in Harefield, and this is a hugely exciting development. We think that at least 50 further heart transplants will be offered to program through this development, so it's pretty exciting stuff.  But the frustrating thing is the demand is still so much greater and I think, sadly, that demand will always be greater than supply whatever fabulous innovations we come up with

But, in the meantime, let's encourage everybody, everybody to get onto the organ donations register. Opt in and help somebody.

Add a comment

CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.