transitions by the Stark effect is difficult, the estimated $b$ component of about 0.7 D seems reasonable. The line intensities for the tunneling-rotation transitions are by about one order of magnitude weaker than those of the pure rotational transitions, consistent with the calculated dipole moment ratio $\left(\mu_{b} / \mu_{a}\right)$ of about 0.22 .

## C. Dynamics of proton tunneling

We consider the tunneling-rotation motion of tropolone using a one-dimensional model. The main aim of this discussion is to clarify what the spectroscopic constants obtained in the present study mean as well as to confirm that the tunneling-rotation interaction constant $F$ is within an acceptable range of magnitude. For this purpose, use of a multidimensional model would only lead to unnecessary complication, although such models have frequently been employed for interpreting the vibrational dependence of the tunneling splitting. ${ }^{13-15}$ The present treatment partially parallels the one-dimensional analysis of proton tunneling dynamics in malonaldehyde by Baughcum et al. ${ }^{25}$

The one-dimensional model is characterized by giving the coordinates $\left[a_{i}(x), b_{i}(x), c_{i}(x)\right.$ ] of each atom referred to the molecule-fixed Cartesian axes as functions of the tunneling coordinate $x$, which describes the degree of the molecular deformation during the tunneling motion. We assume that the potential function $U(x)$ has two equivalent minima at $x$ $= \pm x_{\text {min }}$, and $x=0$ corresponds to the top of the barrier. As usual, the origin of the axis system is chosen at the center of mass of the molecule. The $c$ axis is perpendicular to the molecular plane, and $c_{i}(x)=0$ for all atoms. The orientation of the $a$ and $b$ axes can be chosen so that the angular momentum caused by the tunneling motion vanishes when viewed from the molecule-fixed axis system, i.e.,

$$
\begin{equation*}
\sum_{i} m_{i}\left[a_{i}\left(d b_{i} / d x\right)-b_{i}\left(d a_{i} / d x\right)\right]=0 \tag{8}
\end{equation*}
$$

Note that the $a$ and $b$ axes do not coincide with the instantaneous principal axes.

The classical kinetic energy for the tunneling-rotation motion is then written as

$$
\begin{align*}
T= & (1 / 2) I_{a a}(x) \omega_{a}^{2}+(1 / 2) I_{b b}(x) \omega_{b}^{2}+(1 / 2) I_{c c}(x) \omega_{c}^{2} \\
& +I_{a b}(x) \omega_{a} \omega_{b}+(1 / 2) G(x)(d x / d t)^{2}, \tag{9}
\end{align*}
$$

where $I_{\alpha \beta}(x)$ is an element of the inertial tensor, $\omega_{\alpha}$ an angular velocity component, and $G(x)$ is the reduced mass defined by

$$
\begin{equation*}
G(x)=\sum_{i} m_{i}\left[(d a / d x)^{2}+(d b / d x)^{2}\right] . \tag{10}
\end{equation*}
$$

The reduced mass, in general, depends on the tunneling coordinate $x$. However, an appropriate definition of $x$ reduces $G(x)$ to a constant $G_{0}$. Then the quantum mechanical Hamiltonian is derived by a standard method as

$$
\begin{align*}
H= & A(x) J_{a}^{2}+B(x) J_{b}^{2}+C(x) J_{c}^{2}+F(x)\left(J_{a} J_{b}+J_{b} J_{a}\right) \\
& -K d^{2} / d x^{2}+U(x), \tag{11}
\end{align*}
$$

where $K$ is a constant inversely proportional to the reduced mass $G_{0}$. The coefficients $A(x), B(x), C(x)$, and $F(x)$ are the rotational constants and the tunneling-rotation interaction constant in frequency units as functions of the tunneling coordinate $x$,

$$
\begin{align*}
& A(x)=\left(h / 8 \pi^{2}\right) I_{b b}(x) /\left[I_{a a}(x) I_{b b}(x)-I_{a b}(x)^{2}\right]  \tag{12a}\\
& B(x)=\left(h / 8 \pi^{2}\right) I_{a a}(x) /\left[I_{a a}(x) I_{b b}(x)-I_{a b}(x)^{2}\right],  \tag{12b}\\
& C(x)=\left(h / 8 \pi^{2}\right)\left[1 / I_{c c}(x)\right]  \tag{12c}\\
& F(x)=-\left(h / 8 \pi^{2}\right) I_{a b}(x) /\left[I_{a a}(x) I_{b b}(x)-I_{a b}(x)^{2}\right] . \tag{12d}
\end{align*}
$$

When the Schrödinger equation for the tunneling motion,

$$
\begin{equation*}
\left[-K d^{2} / d x^{2}+U(x)\right]|n\rangle=\epsilon_{n}|n\rangle \tag{13}
\end{equation*}
$$

is solved, the first and second lowest eigenstates correspond to the $0^{+}$and $0^{-}$components, respectively, of the tunneling doublet. The rotational constants observed for the $0^{+}$and $0^{-}$ states correspond to the averages of $A(x)$, etc., over the respective eigenfunctions,

$$
\begin{equation*}
A_{ \pm}=\left\langle 0^{ \pm}\right| A(x)\left|0^{ \pm}\right\rangle \text {etc. } \tag{14}
\end{equation*}
$$

whereas the tunneling-rotation interaction constant is given by

$$
\begin{equation*}
F=\left\langle 0^{+}\right| F(x)\left|0^{-}\right\rangle \tag{15}
\end{equation*}
$$

Note that $A(x)$, etc., are even functions of $x$ but $F(x)$ is an odd function, and that the eigenfunctions $\left|0^{+}\right\rangle$and $\left|0^{-}\right\rangle$are even and odd with respect to $x$. If the double minimum potential has a high barrier as in the present case, the eigenfunctions $\left|0^{ \pm}\right\rangle$have their amplitudes concentrated in the vicinity of the potential minima. Therefore, $A_{ \pm}$, etc., would be close to $A\left(x_{\min }\right)$, the value at the potential minimum, and $F$ to $F\left(x_{\text {min }}\right)$.

Now we present the results of some sample calculations with assumption of a simple linear trajectory model, in which each atom traverses a straight path,

$$
\begin{align*}
& a_{i}(x)=(1 / 2)\left[a_{i}^{\mathrm{R}}+a_{i}^{\mathrm{L}}\right]+(1 / 2)\left[a_{i}^{\mathrm{R}}-a_{i}^{\mathrm{L}}\right]\left(x / x_{\text {min }}\right),  \tag{16a}\\
& b_{i}(x)=(1 / 2)\left[b_{i}^{\mathrm{R}}+b_{i}^{\mathrm{L}}\right]+(1 / 2)\left[b_{i}^{\mathrm{R}}-b_{i}^{\mathrm{L}}\right]\left(x / x_{\text {min }}\right), \tag{16b}
\end{align*}
$$

connecting $\left(a_{i}^{\mathrm{R}}, b_{i}^{\mathrm{R}}\right)$ and $\left(a_{i}^{\mathrm{L}}, b_{i}^{\mathrm{L}}\right)$, which denote the positions of the atom corresponding to the two potential minima. The molecule takes the right-hand side ( R ) conformation when $x=x_{\text {min }}$, and the left-hand side ( L ) one when $x=-x_{\text {min }}$. With an assumption of the molecular shape at a minimum, these coordinates are uniquely determined in accordance with the condition of vanishing angular momentum [Eq. (8).]

If the $a b$ initio optimized structure by Takada and Nakamura ${ }^{14}$ [Table IX (A)] is arbitrarily assumed as the equilibrium conformation, we obtain $F\left(x_{\min }\right)=-6.0 \mathrm{MHz}$. This conformation corresponds to $A\left(x_{\min }\right)=2751.4, B\left(x_{\min }\right)$ $=1652.2$, and $C\left(x_{\min }\right)=1032.3 \mathrm{MHz}$, in good agreement with the experimentally obtained rotational constants. However, another calculation done on the equilibrium conformation only slightly distorted from the above structure gave $F\left(x_{\text {min }}\right)=22.8 \mathrm{MHz}$. These two structures differ by less than $0.01 \AA$ and $0.8^{\circ}$ in bond lengths and angles, respectively. It is

