25 Klein-Gordon Derivation

If suitable operators are defined, the Klein-Gordon equation may be derived from a transformation of mass dilation. The transform uses: De Broglie momentum, quantization rules, frequency definition, and suitable operators. Quantization returns the reduced Plank constant. The transformation of mass dilation gives an "equation of motion" which interacts with a wave function, giving an equivalent Klein-Gordon equation.

Mass Dilation:

The equation for mass dilation is: $1 = (m_0/m)^2 + (v/c)^2$

Where: m₀ is rest mass

m is dynamic mass

v is scalar velocity

c is the light constant

Momentum:

$1 = (m_0 v/mv)^2 + (v/c)^2$
mv = h/λ
$1 = (m_0 v)^2 / (h/\lambda)^2 + (v/c)^2$

Energy:

The mass dilation equation may be re-written as "Energy dilation":

$$(hc/\lambda)^2 = (m_0vc)^2 + (hv/\lambda)^2$$

Quantization:

Assume that a "wave" may be composed of a discreet number (n) of "wave packets". The wave has a wavelength (λ_p) and a wave packet also has wavelength (λ_p).

 $\lambda = n\lambda_{p}$

Giving:

Where: n is an integer

Energy dilation may be written as:

 $h^{2}c^{2}/n^{2}\lambda_{p}^{2} = m_{0}^{2}v^{2}c^{2} + h^{2}v^{2}/n^{2}\lambda_{p}^{2}$

Assume that a wave may be "free" to travel (as radiation) or may be "bound" to matter. Assume that a "bound wave" is restricted to the surface of a "wave sphere". The wave sphere has a radius (r_p) and a circumference (c_p).

A "quantization rule" states that the wavelength of a bound wave must equal the circumference of the restrictive wave sphere:

	$\lambda = c_p$
giving:	$n\lambda_p = 2\pi r_p$
Energy dilation may be written as:	$h^{2}c^{2}/4\pi^{2}r_{p}^{2} = m_{0}^{2}v^{2}c^{2} + h^{2}v^{2}/4\pi^{2}r_{p}^{2}$
giving "quantized energy dilation":	$\hbar^2 c^2 / r_p^2 = m_0^2 v^2 c^2 + \hbar^2 v^2 / r_p^2$

Where: \mathfrak{h} is the reduced Plank constant or "quantized Plank constant": $\mathfrak{h} = h/2\pi$

Frequency:

Assume that a bound wave travels upon the surface of a wave sphere at light speed.

Assume the frequency (f_p) is:	$f_{\rm p} = {\rm c/r_p}$
Quantized energy dilation becomes:	$\hbar^2 f_p^2 = m_0^2 v^2 c^2 + \hbar^2 (v^2/c^2) f_p^2$
Giving frequency-velocity ratios:	$f_{\rm p}^2/v^2 = m_0^2 c^2/\hbar^2 + f_{\rm p}^2/c^2$
An "equation of motion" is:	$(f_p/v)^2 = (f_0/v)^2 + (f_p/c)^2$
Where: $m_0vc = hf_0$	

Relativistic Quantum Energy:

Quantized energy dilation is:	$\hbar^2 f_p{}^2 = m_0{}^2 v^2 c^2 + \hbar^2 (v^2/c^2) f_p{}^2$	
	$\mathfrak{H}^2 f_p^2 = (v^2/c^2) m_0^2 c^4 + \mathfrak{H}^2 (v^2/c^2) f_p^2$	
Giving "relativistic quantum energy":	$(\hbar f_{\rm p})^2 = (M_{\rm R}c^2)^2 + (\hbar f_{\rm R})^2$	
Where: M_R is relativistic mass:	$M_{R} = (v/c)m_{0}$	
f_R is relativistic frequency:	$f_R = (v/c)f_p$	

Operators:

Two operators are required:	$\partial^2/\partial t^2 = f_p^2$	is a frequency operator
	∂²/∂R²	is a spatial operator

The ratio of operators is:

$$(\partial^2/\partial t^2)(\partial R^2/\partial^2) = \partial R^2/\partial t^2 = v^2$$

 $f_p^2/v^2 = \partial^2/\partial R^2$

The "equation of motion" is: $(f_p/v)^2 = (f_0/v)^2 + (f_p/c)^2$

$$f_{\rm p}^2/v^2 = m_0^2 c^2/\hbar^2 + (1/c^2) f_{\rm p}^2$$

Substituting operators gives the "operator equation of motion":

$$\partial^2/\partial R^2 = m_0^2 c^2/\hbar^2 + (1/c^2)\partial^2/\partial t^2$$

The Wave Function;

A wave function (ψ) interacts with the operator equation of motion:

$$\partial^2 \psi / \partial R^2 = m_0^2 c^2 \psi / \hbar^2 + (1/c^2) \partial^2 \psi / \partial t^2$$

giving the Klein-Gordon equivalent:

$$0 = (1/c^2)\partial^2\psi/\partial t^2 - \partial^2\psi/\partial R^2 + m_0^2c^2\psi/\hbar^2$$

Conclusion;

If suitable operators are defined the Klein-Gordon equation may be derived from mass dilation using De Broglie momentum and quantization rules. Quantization gives the reduced Plank constant. The "equation of motion" interacts with a wave function giving an equivalent Klein-Gordon equation.