08 Compton Interaction

The interaction between an electron and a photon is represented by the Compton equation, published in 1923. Energy is transferred from the photon to the electron. The collision is elastic and each particle recoils in a different direction.

The interaction may be represented as three "phases" of momentum. Each phase (initial, exchange, and final) may be represented as a 3D vector of momentum.

The vectors must be "compatible" for energy transfer so that compatibility conditions apply to the vectors.

Vector components will give the Compton equation.

The Compton Equation;

The Compton equation is; $\lambda_2 - \lambda_1 = (1 - \cos_{\theta})(h/m_ec)$

Where; θ is the scattering angle

 λ_{1} is the initial wavelength of the photon

 λ_2 is the wavelength of photon after scattering ($\lambda_2 > \lambda_1)$

 $\ensuremath{\mathsf{m}_{\mathsf{e}}}$ is electron rest mass

h is the Plank constant

c is the light constant

Vectors of Momentum;

Three vectors of momentum (p_1 , p_2 , p_3) are required. Generally a 3D vector of momentum (p_n) is;

	$p_n = p_{n1}e_{n1} + p_{n2}e_{n2} + p_{n3}e_{n3}$
Where;	'n' is a vector identifier (n = 1,2,3)
	p ₁ is the intial phase
	p ₂ is the exchange phase
	p ₃ is the final phase
	e_{n1} , e_{n2} , e_{n3} are basis vectors (orthogonal unit vectors)
	p_{n1} , p_{n2} , p_{n3} are components of momentum

Each vector has a unique frame of reference.

Each vector has a magnitude; $|\boldsymbol{p}_n| = p_{n4}$ The scalar components are related to the magnitude; $p_{n1}^2 + p_{n2}^2 + p_{n3}^2 = p_{n4}^2$ A sub-component of momentum (p_{n5}) is; $p_{n5}^2 = p_{n1}^2 + p_{n2}^2 = p_{n4}^2 - p_{n3}^2$

Angular Geometry;

Each vector has "component angles" (A_{n1}, A_{n2}) having geometry;

$p_{n1} = p_{n5} Cos(A_{n1})$	and	$p_{n2} = p_{n5}Sin(A_{n1})$
$p_{n5} = p_{n4} Cos(A_{n2})$	and	$p_{n3} = p_{n4}Sin(A_{n2})$
$p_{15}^{2} - p_{13}^{2} = p_{14}^{2} \cos(2A_{12})$	and	$2p_{15}p_{13} = p_{14}^2 Sin(2A_{12})$

Compatibility;

All vectors must be compatible for interaction. The eight compatibility rules are;

$A_{11} = A_{12}$	$A_{21} = A_{22}$	A ₃₁ = A ₃₂	$2A_{12} = \theta$
p ₁₄ = p ₂₁	p ₂₄ = p ₃₄	p ₁₃ = p ₂₂	P ₁₅ = p ₃₅

Where; θ is the scattering angle

Compatibility rules give an important result;

$$A_{n1} = A_{n2}$$

$$Cos(A_{n1}) = Cos(A_{n2})$$

$$p_{n1}/p_{n5} = p_{n5}/p_{n4}$$

$$p_{n1}p_{n4} = p_{n5}^{2}$$

Conservation of momentum may be represented as; $p_{15} = p_{35}$

$$p_{15}^2 = p_{35}^2$$

$$p_{11}p_{14} = p_{31}p_{34}$$

The Exchange Phase;

The exchange vector has input momentum (p_{21}) and output momentum (p_{24}) .

Exchange performance may be represented as the "exchange ratio" which is "output/input"; p_{24}/p_{21}

Compatibility rules and geometry apply, giving;

$$p_{24}/p_{21} = p_{24}/p_{14} = p_{24}p_{11}/p_{14}p_{11} = p_{24}p_{11}/p_{15}^2 = p_{24}p_{11}/p_{35}^2 = p_{34}p_{11}/p_{35}^2$$
$$p_{24}/p_{21} = p_{34}p_{11}/p_{35}^2 = (p_{34}p_{11})/(p_{31}p_{34})$$

giving the equivalent exchange ratio (p_{11}/p_{31}) ;

$$p_{24}/p_{21} = p_{11}/p_{31}$$

The Momentum Equation;

From angular geometry;	$\cos(\theta) = \cos(2A_{12}) = (p_{15}^2 - p_{13}^2)/p_{14}^2$
	1 - Cos(θ) = ($p_{14}^2 - p_{15}^2 + p_{13}^2$)/ p_{14}^2
From compatibility rules;	1 - Cos(θ) = ($p_{21}^2 - p_{15}^2 + p_{22}^2$)/ p_{14}^2
From components;	1 - Cos(θ) = ($p_{25}^2 - p_{15}^2$)/ p_{14}^2
From angular rules;	1 - Cos(θ) = (p ₂₁ p ₂₄ - p ₁₁ p ₁₄)/p ₁₄ ²
From compatibility rules;	1 - Cos(θ) = (p ₂₁ p ₂₄ - p ₁₁ p ₂₁)/p ₂₁ ²
	1 - Cos(θ) = p_{24}/p_{21} - p_{11}/p_{21}
The exchange ratio gives;	1 - Cos(θ) = p_{11}/p_{31} - p_{11}/p_{21}
The momentum equation is;	1 - Cos(θ) = p ₁₁ (1/p ₃₁ - 1/p ₁₄)

Momentum Definitions;

Momentum definitions are;	$p_{11} = m_e c$	
	$p_{31} = h/\lambda_{31}$	
	$p_{14} = h/\lambda_{14}$	
	$p_{15} = m_x c = (p_{11}p_{14})^{1/2} = (hm_e c/\lambda_{14})^{1/2}$	
	$p_{12} = m_x v_x$	
The momentum equation is;	1 - Cos(θ) = p ₁₁ (1/p ₃₁ - 1/p ₁₄)	
Definitions give;	1 - Cos(θ) = m _e c($\lambda_{31}/h - \lambda_{14}/h$)	
Equivalent Compton equation;	1 - Cos(θ) = (m _e c/h)(λ_{31} - λ_{14})	

Mass dilation may also be represented;

$$\begin{split} &\text{Cos}(A_{11}) = p_{11}/p_{15} = m_e/m_x \qquad \text{and} \qquad \text{Sin}(A_{11}) = p_{12}/p_{15} = v_x/c \\ &\text{Cos}^2(A_{11}) + \text{Sin}^2(A_{11}) = 1 \\ &(m_e/m_x)^2 + (v_x/c)^2 = 1 \end{split}$$

Conclusion;

The Compton Effect is a unique interaction which may be represented by three vectors of momentum. Each vector represents a "phase of interaction". Vector components give the Compton equation and mass dilation.