08 Compton Interaction

The interaction between an electron and a photon is represented by the Compton equation, published in 1923. Energy is transferred from the photon to the electron. The collision is elastic and each particle recoils in a different direction.

The interaction may be represented as three "phases" of momentum. Each phase (initial, exchange, and final) may be represented as a 3D vector of momentum.

The vectors must be "compatible" for energy transfer so that compatibility conditions apply to the vectors.

Vector components will give the Compton equation.

The Compton Equation;

The Compton equation is; $\quad \lambda_{2}-\lambda_{1}=\left(1-\operatorname{Cos}_{\theta}\right)\left(\mathrm{h} / \mathrm{m}_{\mathrm{e}} \mathrm{c}\right)$
Where; $\quad \theta$ is the scattering angle
λ_{1} is the initial wavelength of the photon
λ_{2} is the wavelength of photon after scattering $\left(\lambda_{2}>\lambda_{1}\right)$
m_{e} is electron rest mass
h is the Plank constant
c is the light constant

Vectors of Momentum;

Three vectors of momentum $\left(\boldsymbol{p}_{1}, \boldsymbol{p}_{2}, \boldsymbol{p}_{3}\right)$ are required. Generally a 3D vector of momentum $\left(\boldsymbol{p}_{n}\right)$ is;
$\boldsymbol{p}_{n}=\mathrm{p}_{\mathrm{n} 1} \boldsymbol{e}_{\mathrm{n} 1}+\mathrm{p}_{\mathrm{n} 2} \boldsymbol{e}_{n 2}+\mathrm{p}_{\mathrm{n} 3} \boldsymbol{e}_{\mathrm{n} 3}$
Where; \quad ' n ' is a vector identifier ($n=1,2,3$)
\boldsymbol{p}_{1} is the intial phase
$\boldsymbol{p}_{\boldsymbol{2}}$ is the exchange phase
$\boldsymbol{p}_{\mathbf{3}}$ is the final phase
$\boldsymbol{e}_{n 1}, \boldsymbol{e}_{n 2}, \boldsymbol{e}_{n 3}$ are basis vectors (orthogonal unit vectors)
$\mathrm{p}_{\mathrm{n} 1}, \mathrm{p}_{\mathrm{n} 2}, \mathrm{p}_{\mathrm{n} 3}$ are components of momentum

Each vector has a unique frame of reference.
Each vector has a magnitude; $\quad\left|\boldsymbol{p}_{\boldsymbol{n}}\right|=\mathrm{p}_{\mathrm{n} 4}$
The scalar components are related to the magnitude; $\quad \mathrm{p}_{\mathrm{n} 1}{ }^{2}+\mathrm{p}_{\mathrm{n} 2}{ }^{2}+\mathrm{p}_{\mathrm{n} 3}{ }^{2}=\mathrm{p}_{\mathrm{n} 4}{ }^{2}$
A sub-component of momentum $\left(\mathrm{p}_{\mathrm{n} 5}\right)$ is;
$\mathrm{p}_{\mathrm{n} 5}{ }^{2}=\mathrm{p}_{\mathrm{n} 1}{ }^{2}+\mathrm{p}_{\mathrm{n} 2}{ }^{2}=\mathrm{p}_{\mathrm{n} 4}{ }^{2}-\mathrm{p}_{\mathrm{n} 3}{ }^{2}$

Angular Geometry;

Each vector has "component angles" ($\mathrm{A}_{\mathrm{n} 1}, \mathrm{~A}_{\mathrm{n} 2}$) having geometry;

$$
\begin{array}{lll}
p_{n 1}=p_{n 5} \operatorname{Cos}\left(A_{n 1}\right) & \text { and } & p_{n 2}=p_{n 5} \operatorname{Sin}\left(A_{n 1}\right) \\
p_{n 5}=p_{n 4} \operatorname{Cos}\left(A_{n 2}\right) & \text { and } & p_{n 3}=p_{n 4} \operatorname{Sin}\left(A_{n 2}\right) \\
p_{15}{ }^{2}-p_{13}{ }^{2}=p_{14}{ }^{2} \operatorname{Cos}\left(2 A_{12}\right) & \text { and } & 2 p_{15} p_{13}=p_{14}{ }^{2} \operatorname{Sin}\left(2 A_{12}\right)
\end{array}
$$

Compatibility;

All vectors must be compatible for interaction. The eight compatibility rules are;

$\mathrm{A}_{11}=\mathrm{A}_{12}$	$\mathrm{~A}_{21}=\mathrm{A}_{22}$	$\mathrm{~A}_{31}=\mathrm{A}_{32}$	$2 \mathrm{~A}_{12}=\theta$
$\mathrm{p}_{14}=\mathrm{p}_{21}$	$\mathrm{p}_{24}=\mathrm{p}_{34}$	$\mathrm{p}_{13}=\mathrm{p}_{22}$	$\mathrm{P}_{15}=\mathrm{p}_{35}$

Where; θ is the scattering angle
Compatibility rules give an important result;

$$
\begin{aligned}
& A_{n 1}=A_{n 2} \\
& \operatorname{Cos}\left(A_{n 1}\right)=\operatorname{Cos}\left(A_{n 2}\right) \\
& p_{n 1} / p_{n 5}=p_{n 5} / p_{n 4} \\
& p_{n 1} p_{n 4}=p_{n 5}^{2}
\end{aligned}
$$

Conservation of momentum may be represented as; $\quad p_{15}=p_{35}$

$$
\begin{aligned}
& \mathrm{p}_{15}^{2}=\mathrm{p}_{35}^{2} \\
& \mathrm{p}_{11} \mathrm{p}_{14}=\mathrm{p}_{31} \mathrm{p}_{34}
\end{aligned}
$$

The Exchange Phase;

The exchange vector has input momentum (p_{21}) and output momentum (p_{24}).
Exchange performance may be represented as the "exchange ratio" which is "output/input"; $\mathrm{p}_{24} / \mathrm{p}_{21}$

Compatibility rules and geometry apply, giving;

$$
\begin{aligned}
& p_{24} / p_{21}=p_{24} / p_{14}=p_{24} p_{11} / p_{14} p_{11}=p_{24} p_{11} / p_{15}^{2}=p_{24} p_{11} / p_{35}^{2}=p_{34} p_{11} / p_{35}^{2} \\
& p_{24} / p_{21}=p_{34} p_{11} / p_{35}{ }^{2}=\left(p_{34} p_{11}\right) /\left(p_{31} p_{34}\right)
\end{aligned}
$$

giving the equivalent exchange ratio ($\mathrm{p}_{11} / \mathrm{p}_{31}$);

$$
p_{24} / p_{21}=p_{11} / p_{31}
$$

The Momentum Equation;

From angular geometry;
$\operatorname{Cos}(\theta)=\operatorname{Cos}\left(2 \mathrm{~A}_{12}\right)=\left(\mathrm{p}_{15}{ }^{2}-\mathrm{p}_{13}{ }^{2}\right) / \mathrm{p}_{14}{ }^{2}$
$1-\operatorname{Cos}(\theta)=\left(p_{14}{ }^{2}-p_{15}{ }^{2}+p_{13}{ }^{2}\right) / p_{14}{ }^{2}$
From compatibility rules;
$1-\operatorname{Cos}(\theta)=\left(p_{21}{ }^{2}-p_{15}{ }^{2}+p_{22}{ }^{2}\right) / p_{14}{ }^{2}$
From components;
$1-\operatorname{Cos}(\theta)=\left(p_{25}{ }^{2}-p_{15}{ }^{2}\right) / p_{14}{ }^{2}$
From angular rules;
$1-\operatorname{Cos}(\theta)=\left(p_{21} p_{24}-p_{11} p_{14}\right) / p_{14}{ }^{2}$
From compatibility rules;
$1-\operatorname{Cos}(\theta)=\left(p_{21} p_{24}-p_{11} p_{21}\right) / p_{21}{ }^{2}$
$1-\operatorname{Cos}(\theta)=p_{24} / p_{21}-p_{11} / p_{21}$
The exchange ratio gives;
$1-\operatorname{Cos}(\theta)=p_{11} / p_{31}-p_{11} / p_{21}$
The momentum equation is;
$1-\operatorname{Cos}(\theta)=p_{11}\left(1 / p_{31}-1 / p_{14}\right)$

Momentum Definitions;

Momentum definitions are; $\quad p_{11}=m_{e} c$
$p_{31}=h / \lambda_{31}$
$\mathrm{p}_{14}=\mathrm{h} / \mathrm{\lambda}_{14}$
$p_{15}=m_{x} c=\left(p_{11} p_{14}\right)^{1 / 2}=\left(h m_{e} c / \lambda_{14}\right)^{1 / 2}$
$\mathrm{p}_{12}=\mathrm{m}_{\mathrm{x}} \mathrm{v}_{\mathrm{x}}$
The momentum equation is; $\quad 1-\operatorname{Cos}(\theta)=p_{11}\left(1 / p_{31}-1 / p_{14}\right)$
Definitions give;
$1-\operatorname{Cos}(\theta)=m_{e} c\left(\lambda_{31} / h-\lambda_{14} / h\right)$
Equivalent Compton equation; 1- $\operatorname{Cos}(\theta)=\left(m_{e} c / h\right)\left(\lambda_{31}-\lambda_{14}\right)$

Mass dilation may also be represented;

$$
\begin{aligned}
& \operatorname{Cos}\left(A_{11}\right)=p_{11} / p_{15}=m_{e} / m_{x} \quad \text { and } \quad \operatorname{Sin}\left(A_{11}\right)=p_{12} / p_{15}=v_{x} / c \\
& \operatorname{Cos}^{2}\left(A_{11}\right)+\operatorname{Sin}^{2}\left(A_{11}\right)=1 \\
& \left(m_{e} / m_{x}\right)^{2}+\left(v_{x} / c\right)^{2}=1
\end{aligned}
$$

Conclusion;

The Compton Effect is a unique interaction which may be represented by three vectors of momentum. Each vector represents a "phase of interaction". Vector components give the Compton equation and mass dilation.

