Physics from Axioms.

Mr. Willem F. Esterhuyse

Email: talanum1@yahoo.com

Abstract

: We introduce a definition of Time and Photons from four Axioms. Basically, you take a 4dimensional manifold, transform them into two superimposed Riemann Spheres and isolate a circle (call this Pp) in one of the spheres. Then one specifies the circle to turn by a unit amount (the turn is a quantum rotation: turn from state A to state B without visiting the in-between states) as measured along the circle if the Pp encounters a space point. The circle's infinity point stays at the north pole of the Riemann Sphere for any finite rotation since infinity - constant = infinity. Using this , Time can be defined if we require special particles to be in the particles of a clock. We go on to define photons and antiphotons. If we define antiphotons we are at a more efficient level of using resources (conservation of space implied by conservation of Energy). The model explains why photons have momentum. The reason why a photon can have variable frequency is also stated. The model assumes there are positive and negative events of spacetime and this is the reason why one can choose a zero point (for coordinates) anywhere. The model explains why light travels at a finite speed.

Keywords: time, photon.

Contents:

1. Defining Time.

2. Defining Photons and Anti-photons.

Appendix A: Computations

Bibliography.

1. Defining Time.

Here are the four axioms we are going to use:
A1: Complex numbers exist. Call this C .

A2: $x=x$
A3: $x+y=y+x$
$A 4$: A is a subset of B if B contains A and $B-A$ not $=$ the empty set.

The following definitions are stated and will be used:

Definitions: "C x C" means "Complex plane Cartesian product Complex plane".
"RS <-> RS" means "Riemann sphere superimposed on Riemann sphere".
"quantum rotation" means "a rotation from state A to state B without visiting the states in-between".

By "event" I will mean: "point in spacetime".

By "negative event" I will mean "a left out point in spacetime".

The format of the statements will be:

Index Statement
Reason

First, we construct a Space. This space will be required to be able to define a particle.

1 Construct $S=C \times C$. A1, A2
1.1 S is 4 dimensional.

1
1.2 Set the components of $S=S_{1,2,3,4}$ in the following order: Real, Imaginary, Real, Imaginary. 1, A2

The reason that we could define this space is because of $A 1$.

We define a particle called Pp next.

2 S can transform into two superimposed Riemann Spheres.
A1, 1

See ref. [6] why this is possible, from a reputable source.

3 Construct two Riemann Spheres of S, call it RS <-> RS = Pp.
A1, 1

We define a circle along the Imaginary axis of the second RS: S_{4}.
4.1 I'm going to use physical terminology below.
4.2 Construct "physical space" $=\mathrm{S}_{\mathrm{P}}=\mathrm{C} \times \mathrm{C} / \mathrm{S}_{4}$.

A1, A2
This gives physical space with $\mathrm{S}_{\mathrm{p} 2}$ multiplied by i .
5 Let P_{T} advance by one (rotate relative to $\mathrm{S}_{1,2,3}$ by one as measured along the circle) if encountering a space point and let the rotation be a quantum rotation. Call this "freq" = T_{s}

A1, 4, 4.2, A2
This rotation does not move infinity at the north pole of RS since infinity - constant = infinity. This circle cannot have a charge of the particle Pp on it. Note that the act of "encountering" need not depend on time or it may depend on a particle at infinity encountering space points, but this does not require time.
$8 \quad$ Let $S_{1,2}$ be perpendicular to $S_{3,4}$
Now we can define a basic time interval:
For particles 1 to N and encounter m (defined using a particle like P_{T}, at infinity), compute:
12 Define "basic time step" $=$ Delta $\mathrm{t}_{\mathrm{Bm}}=1 /$ Ave $\left(\# T_{\mathrm{s}}\right)_{\mathrm{m}}$
1-11, A3, A2
where Ave $\left(\# T_{s}\right)_{m}=(1 / N)\left(\right.$ sum_n=1^N $\left.\left(\# T_{s}\right)_{n m}\right)$.
See Appendix A for sample computations.
From these define "Basic time":
14 Define "Basic time" $=\mathrm{t}_{\mathrm{Bm}}=$ Delta $\mathrm{t}_{\mathrm{B} 1}+$ Delta $^{\mathrm{B}} \mathrm{B} 2+\ldots+$ Delta $_{\mathrm{Bm}} \quad 12,5, \mathrm{~A} 3$
22 Basic Time advances like a clock, it depends on the Pp in the clock and on the route (fast clocks run slow) in space.

18, 21
23 Basic Time $=$ Time.
A2, 22, 14
In practice, we only require that some particle of the crystal/ atom/pendulum/spring of the clock has a circle with no charges on it that can serve as the particle clock.

2. Defining Photons and Anti-photons.

We go further to define photons. For this, we need antiphotons as well. For this, we need to
define negative events of B_{ST} (the origin may then be constructed anywhere.)
23.1 Construct negative points of physical space as: $S_{p-}=(-r) x(-r) x(-r), r>0$, r element of Real numbers
23.2 Couple (Delta $t_{B m}$) to points of $\left(S_{p-}\right)_{m}$. Call the result $B_{s t-}$.

14, 23.1
23.3 Shift the origin of $B_{S T}$ - in $B_{S T}$ by an amount: min\{ distance of two adjacent events of $B_{S T}$ along any axis of $\left.B_{S T}\right\} / 2$ and do the same for all four directions. Call the result $C^{2} B_{S T}$. 23.2
23.4 Define the events and negative events of $C B_{S T}$ to have closest neighbors in a helix for any direction in $\mathrm{CB}_{\text {st }}$. This is not picture able. 23.3

24 Define a constant $\mathrm{c}=\Delta \mathrm{S}_{\mathrm{Pm}} / \Delta \mathrm{t}_{\mathrm{Bm}} \quad$ 4.2, A2
24.1 Let c be the maximum speed trough $C B_{S T}$ i.e. the speed at which the particle sees minimum distance between succeeding events of $C_{S T}$.
4.2, 23.3
24.2 Construct $S=C$ A1

25 From S, define a new sothern hemisphere RS. 24.2
25.1 From S define a new northern hemispere of left out events of $B_{S T}$ as Riemann sphere left out (RSL) 24.2
25.2 Call the construct of $25,25.1$ as F_{1}. 25,
25.1

29 Construct $\mathrm{S}_{\mathrm{AP}}=(-\mathrm{C})$

This way the particle and antiparticle may look identical except for phase difference of 180 degrees (as if turned through 180 degrees).

30 Construct from $S_{A P}$ a RSL and RS as inverse of above. Call it $\underline{\mathrm{F}}_{\underline{1}}$.
29, 25, 25.1

31 Let $C_{\text {st }}$ construct any vector in F_{1}, call it p. This is done by identifying four numbers in F_{1}. Call such particle $q \mathrm{qp}_{1}$. $3,18,4.1$
p is 4 dimensional 31

33 Construct the same vector as in $31 \times(-1)$ in \underline{F}_{1}. Call such particle qFp_{1}. 31, 28

34 Identify a marker in F_{1} 's origin and at the origin in \underline{F}_{1}. 31, 33

35
Set $\mathrm{Fp}_{1}=\mathrm{qFp} p_{1}$ and leave out 2 distinguished events just below the unit circle crossing a
curled up axis. Call the two points A, B. 24.2

36 Set $\mathrm{Fp}_{1}=\underline{\mathrm{qFp}} \underline{1}_{1}$ and add 2 distinguished events just below the unit circle crossing a curled up axis. Call the two points $\underline{A}, \underline{B}$.

37 Let $\mathrm{S}_{1}, \mathrm{~S}_{2}$ of Fp_{1} look like in Figure 1.1

Figure 1.1
The little circles represent events of the circle that was left out. The figure shows an Fp_{1}. The diamonds are positive events of $\mathrm{CB}_{\text {sт }}$ and the circles with dots in the center are negative events of $\mathrm{CB}_{\mathrm{st}}$, as the particle sees them. The little circles denote left out events, this is accomplished by letting the Fp_{1} take four events of Fp_{1}, now $\underline{\mathrm{p}}_{\underline{1}}$ would have four additions of events (see figure 1.2). The distance " d " is defined as a constant multiple of the interaction strength. The charges so generated (event exchanging) may be called: "relativistic mass" since it causes the photon to follow geodesics in spacetime. This is why photons have momentum.

In figure 1.1 CB $_{\text {st }}$ chose a momentum vector in the up direction, however it cannot go precisely
in the up direction since this would require infinite momentum.

38 Let $\mathrm{S}_{\mathrm{AP} 1}, \mathrm{~S}_{\mathrm{AP} 2}$ of $\underline{\mathrm{p}}_{1}$ look like in Figure 1.1, (just turned upside down and with events, left out events interchanged).

29 -> 32.1
39 Let the starting position (after one instance of time) of $F p_{1}$ and $\underline{F p}_{1}$ be as drawn in figure 1.2 (only the curled up S_{1} and S_{2}-direction shown). 29

Figure 1.2

The figure shows a $F p_{1}$ and $\underline{F p}_{1}$ with the $\underline{F p}_{\underline{1}}$ taking events from $F p_{1}$. We postulate that the $\underline{F p}_{\underline{1}}$ is made of left out eents, so it carries the positive points (4 of them) from Fp ${ }_{1}$. It is easily seen that the two annihilate if becoming superimposed. They are defined to have momentum in opposite directions.

40 Let the two left out events of $\mathrm{Fp}_{1} A$ and B and the other two left out events sense the closest four events of $C B_{S T}$ in direction p and let them engage these events even if the whole Fp_{1} needs to turn or move linearly (see force on Fp_{1} at item 47). 35

41 If four events were engaged: distinguish four new events and go to 40. 35

42 Let $\underline{F p}_{1}$ move similarly to 40, just sensing the nearest events of negative coordinates in the $-p$ direction.
$43 \quad \mathrm{Fp}_{1}$ and Fp_{1} may be polarised: circularly, transversely, or longitudinally. 37

43 is true since the point at infinity gives Fp_{1} an orientation in $\mathrm{CB}_{\text {ST }}$.
$45 \quad \mathrm{Fp}_{1}$ has spin 1.
44,
23.4

This is true since $F p_{1}$ looks the same if turned through 360 degrees.

46 The events of $C B_{s t}$ cause a force with a nonzero component in the p direction. Define F $=$ ma. With $m=0$ we have infinite acceleration thus infinite speed. But infinite speed would saturate at c. Hence Fp_{1} goes p -wards at the speed of light.

47 That the movement of Fp_{1} causes Electro-Magnetic waves can be seen from the following figure. The F forces have a tiny reaction force in the up direction due to the curve at A and B not being straight. Figure 1.3
47.1 To get a fuller wave we must have another Fp_{1} cooperating with this one such that " C " points in the up direction.

Figure 1.3
47.2 To get a perpendicular magnetic force we need to include events on the other circle as shown in Figure 1.1. Figure 1.1
47.3 The force F depends on the stiffness of spacetime and distance d (in Figure 1.1). Figure 1.3

This force is the initial mechanism whereby a protophoton is accelerated to light speed. At light speed this force is balanced by a force in the -p direction, working in on the topmost point.

Figure 1.3

48 Fp_{1} gets deflected if $\mathrm{CB}_{\text {ST }}$ is curved by gravity. 37
48.1 Let the other circle at C also have 2 events on it removed, so left out events remain. These events must be magnetic in nature.

Figure 1.3
For this, we need 2 types of events of $\mathrm{CB}_{\mathrm{st}} \mathrm{U}\{$ Magnetic field $\}$.
49
Fp_{1} is a photon.
43 -> 48
49.1 Fp_{1} is an antiphoton.

43 -> 48

Comments:

In trying to construct photons by inserting a half circle on Pp one is led (because the half-circle must come from a copy of space) to also construct antiphotons and they are not made of antidimensions.

After line 34 we have constructed a photon and an anti-photon and basic spacetime and time. We may postulate that EM comes from 3 dimensions of space x the 5 'th dimension.

We have that the theory of defining photons may be tested by proving: there is a direction in which photons with the same orientation will not go.

We finally state that time defined by: "It is what a clock measure." has problems since a clock can be turned back or not tightly wound up i.e. clocks don't dictate time. Also: a clock has moving parts and movement requires time: definition circular.

Appendix A: Computations

Now we make a lot of data for the particles (n, set m (after encounter $=m$) $T_{\text {snm }}$):

n	$\mathrm{T}_{\text {sn1 }}$	$\mathrm{T}_{\text {sn2 }}$	Ave($\mathrm{T}_{\text {sn1 }}$)	Ave($\mathrm{T}_{\text {sn2 }}$)	Delta t_{B1}	Delta $\mathrm{t}_{\mathrm{B} 2}$
1	3	5				
2	4	4				
3	2	3				
4	2	2				
5	3	3	14/5	17/5	1/14/5	1/17/5
					0.357	0.294

$\mathrm{t}_{\mathrm{Bm}}=\operatorname{Ave}\left(\mathrm{T}_{\mathrm{sn} 1}\right)+\operatorname{Ave}\left(\mathrm{T}_{\mathrm{sn2}}\right)+\ldots+\operatorname{Ave}\left(\mathrm{T}_{\mathrm{snm}}\right)$
Fast clock: $\mathrm{t}_{\mathrm{Bm}}: \mathrm{T}_{\mathrm{sn1} 1}=\mathrm{T}_{\mathrm{sn1} 1}, \mathrm{~T}_{\mathrm{sn2}}=4{ }^{*} \mathrm{~T}_{\mathrm{sn1} 1}, \ldots$
If slow clock: $t_{B m}: T_{s n 1}=T_{s n 1}, T_{s n 2}=2{ }^{*} T_{s n 1}, \ldots$ then $t_{B m}$ must $>\mathrm{t}^{\prime}{ }_{B m}$. Yes condition holds.

Bibliography:

[2] www.sciforums.com. Username: NotEinstein.
[3] Nagashima Y, Elementary Particle Physics. Volume 1: Quantum Field Theory and Particles. Wiley-VCH Verlag GmbH \& Co. KGaA. 2010.
[4] Hdjensofjfnen, Wikipedia, Internet: https://en.m.wikipedia.org/wiki/Pion. 2019.
[5] Cao, Run Ze. https://www.youtube.com/watch?v=Wmr4laNUeGc. Video name: Einstein's Relativity is WRONG Part 0.
[6] Carrol, Sean. https://www.youtube.com/watch?v=77LM t19djl The Biggest Ideas in the Universe. 4. Space.

