
Calculations:

  We calculate the transition energy of: F(9, 9) decaying by proton conversion into O(8,10) after 

the proton decayed. We need the distance between orbital layer PL and PR. This distance is 

nearly the  same as the radius of He(2, 2) = d = R0 (2*2)^(1/3) = 1.587 fm. We use: E = m|a|d. 

Seeing that the neutron will accelerate halfway and then decellerate the rest of the way we 

have E = m |a| d/2 + m |a| d/2. We estimate |a| with : E = 106*a* (1.587/2)*10-15 = 10*106 eV 

=> a = 1.26*1016 m/s2.  We will use this value in what follows. After travelling d/2 fm:  dx/(dt/dt) 

= 12.6 fm/s2, dx = d/2 =12.6*10-15* t2/2 => t = SQR(1.587/12.6) =  0.1122 s. This looks realistic. 

After so much seconds the neutron moves at: dx/dt = integral 12.6 dt speed v = 12.6*0.1122 =  

1.41 fm/s. This is much slower than the speed of light. Typical speeds are 2 SQRT (MeV/kg) (see 

ref. [13]).

  As can be seen, the model is more predictive than just an energy level diagram. It can be seen 

that the energy levels of the R orbital layer does not have equal energy levels as one would be 

led to believe in the "random model".

  We see by the classical analysis that the excited O(8,10) will emit 8 photons before becoming 

the stable O(8,10), JP = 0+. This is for 4 transitions. Quantum mechanically the emmited photon 

energies is just the difference in momentum of the 4 orbitals, so just 4 photons would be 

emitted, two of which having the same frequency (see the following figure):

Figure 17.1

  We see that all the transitions are to lower energy levels, so the reaction is exothermic.

  We proceed to calculate the energy levels of transitions as indicated in the following figure 
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(labelled by En). To do this we examine the model's prediction for B(5, 4):

Figure 17.2

We label the energy levels by the layer they are in with an 1 or 2 for single and double distance 

orbitals respectively. Thus the energy level of the proton in RL will be denoted: ER1. We assume 

the P and Q nucleons are at the centre of the coordinate system. Then the potential energy at 

ER1's location (r) is:

U (r) = -He- r/r
0*4/r, (1)

where r0 = 0.7617*10^(-15) and H = 0.0627. The energy associated with the angular momentum 

of ER1 is:

E =  mvr/t0, (2)

where t0 is the time required for one cycle.

  We have the nuclear force on the proton ER1 as a result of the other nucleons, taken as to be at 

the centre of the nucleus is:

F = -He(-r/r
0

)*4/r2. (3)

  This must equal the centripetal force = mpv2/r. So our first formula is:

F = -He(-r/r
0

)*4/r2 = mpv2/r. (4)

or

-He(-r/r
0

)*4/r = mpv2

  Since the Orbital Angular Momentum (L) of ER1 must equal one times h/2pi we have our 
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second formula:

mpvr = h/2pi. (5)

  Make r the subject of (5):

r = h/2pi*mp*v. (6)

  Substituting (6) into (4) and taking v to the right side we get:

He-h/(2pi*m*v*r
0

)*4*2pi*mp*v/h = mpv2

H*8pi/h = veh/(2pi*m*v*r
0

) (7)

  This gives (h = 6.626*10-34):

veh/(2pi*m*v*r
0

) = H*8pi/h = 2.38*1033. (8)

Iterating v, this gives:

v = 2.38*1033  m/s

  Thus (mp = 1,677*10-27):

ER1 = mpv2/2 = 4.75*1039 J = 7.560*1020 eV. (9)

  This is too large by 11 orders of magnitude (< 1/mp). The error is left to the reader to find.

Substituting (6) into (2) we get

E =  (mvh/(2pi*mp*v))/(2pi*r/v)

= (mh/(2pi*mp))/(2pih/(2pi*mp*v))

= (h/(2pi*))*mp*v/h

= mp*v/2pi

= 0.653*106 J = 1.108*10-13 eV

(10)

which is much too small.
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