33 Reissner-Nordström Vectors

Displacement may be represented as a vector. Two types of displacement are "length scale" and "incremental distance". Vectors representing each type act upon a common point. Ratios of components of each type may be related. Assume that the common point has vibration. Relating components will give the Reissner-Nordström metric.

Displacement Vectors;

Two 4D vectors of displacement share a common origin. One vector (\boldsymbol{r}) represents "length scale" and the other vector (\boldsymbol{R}) represents "incremental distance". The vectors are defined as;

$$
\begin{aligned}
& \boldsymbol{r}=\mathrm{r}_{1} \boldsymbol{e}_{11}+\mathrm{r}_{2} \boldsymbol{e}_{12}+\mathrm{r}_{3} \boldsymbol{e}_{13}+\mathrm{r}_{4} \boldsymbol{e}_{14} \\
& \boldsymbol{R}=\partial \mathrm{R}_{1} \boldsymbol{e}_{21}+\partial \mathrm{R}_{2} \boldsymbol{e}_{22}+\partial \mathrm{R}_{3} \boldsymbol{e}_{23}+\partial \mathrm{R}_{4} \boldsymbol{e}_{24}
\end{aligned}
$$

Where; $\quad \boldsymbol{e}_{n 1}, \boldsymbol{e}_{n 2}, \boldsymbol{e}_{n 3}, \boldsymbol{e}_{n 4}$ are directional vectors (unit vectors) in 4D (each vector has a unique frame of reference)
$r_{1}, r_{2}, r_{3}, r_{4}$ are components of length
$\partial R_{1}, \partial R_{2}, \partial R_{3}, \partial R_{4}$ are components of incremental displacement
The vectors have magnitude; $\quad|\boldsymbol{r}|=r_{5}$

$$
|\boldsymbol{R}|=\partial \mathrm{R}_{5}
$$

The components are related to magnitudes; $\quad r_{1}{ }^{2}+r_{2}{ }^{2}+r_{3}{ }^{2}+r_{4}{ }^{2}=r_{5}{ }^{2}$

$$
\partial R_{1}^{2}+\partial R_{2}^{2}+\partial R_{3}^{2}+\partial R_{4}^{2}=\partial R_{5}^{2}
$$

Sub-components $\left(r_{6}, r_{7}, r_{8}\right)$ and $\left(\partial R_{6}, \partial R_{7}, \partial R_{8}\right)$ are related as;

$$
\begin{array}{ll}
r_{6}{ }^{2}=r_{5}{ }^{2}-r_{4}{ }^{2}=r_{7}{ }^{2}+r_{3}{ }^{2} & \partial R_{6}{ }^{2}=\partial R_{5}{ }^{2}-\partial R_{4}{ }^{2}=\partial R_{7}{ }^{2}+\partial R_{3}{ }^{2} \\
r_{7}{ }^{2}=r_{6}{ }^{2}-r_{3}{ }^{2}=r_{1}{ }^{2}+r_{2}{ }^{2} & \partial R_{7}{ }^{2}=\partial R_{6}{ }^{2}-\partial R_{3}{ }^{2}=\partial R_{1}{ }^{2}+\partial R_{2}{ }^{2} \\
r_{8}{ }^{2}=r_{6}{ }^{2}-r_{1}{ }^{2}=r_{2}{ }^{2}+r_{3}{ }^{2} & \partial R_{8}{ }^{2}=\partial R_{6}{ }^{2}-\partial R_{1}{ }^{2}=\partial R_{2}{ }^{2}+\partial R_{3}{ }^{2}
\end{array}
$$

The Deformation Ratio;

A massive and charged object is assumed to deform surrounding space-time by a constant ratio (D);

$$
D=r_{8} / r_{7}
$$

Sub-components give;

$$
\begin{aligned}
& r_{6}^{2}=r_{8}^{2}+r_{1}^{2}=r_{7}^{2}+r_{3}^{2} \\
& r_{8}^{2}=r_{7}^{2}-r_{1}^{2}+r_{3}^{2}
\end{aligned}
$$

Giving; $\quad D^{2}=r_{8}{ }^{2} / r_{7}{ }^{2}=1-r_{1}{ }^{2} / r_{7}{ }^{2}+r_{3}{ }^{2} / r_{7}{ }^{2}$

The General Metric;

The general metric relates incremental components to the incremental magnitude;

$$
\partial R_{1}^{2}+\partial R_{2}^{2}+\partial R_{3}^{2}+\partial R_{4}^{2}=\partial R_{5}^{2}
$$

Vibration;

Assume that the object vibrates having a mean velocity of vibration $\left(v_{5}\right) ; v_{5}=\partial R_{5} / \partial t_{5}$
Giving the "vibrational metric"; $\partial R_{1}{ }^{2}+\partial R_{2}{ }^{2}+\partial R_{3}{ }^{2}+\partial R_{4}{ }^{2}=v_{5}{ }^{2} \partial t_{5}{ }^{2}$

Deformation;

The constant ratio of deformation (D) is related to other ratios of deformation;

$$
D=\partial t_{5} / \partial t=v_{5} / c=\partial R_{1} / \partial \lambda=\partial R_{2} / \partial U_{\theta}=\partial R_{3} / \partial U_{\phi}
$$

Where; c is the light constant
$\partial \lambda$ is incremental wave-length $\quad(\partial \lambda \partial f=c)$
∂f is incremental wave-frequency
$(\partial f=1 / \partial T)$
∂t is "incremental particle time"
∂T is "incremental wave time"
U_{θ} is arc length associated with angle (θ)
U_{ϕ} is arc length associated with angle (ϕ)
The vibrational metric is;

$$
\partial R_{1}^{2}+\partial R_{2}^{2}+\partial R_{3}^{2}+\partial R_{4}^{2}=v_{5}^{2} \partial t_{5}^{2}
$$

Substituting with deformation gives the "wave-particle metric";

$$
\begin{aligned}
& D^{2} \partial \lambda^{2}+D^{2} \partial U_{\theta}^{2}+D^{2} \partial U_{\phi}^{2}+\partial R_{4}^{2}=\left(D^{2} c^{2}\right)\left(D^{2} \partial t^{2}\right) \\
& c^{2} \partial T^{2}+\partial U_{\theta}^{2}+\partial U_{\phi}^{2}+\partial R_{4}^{2} / D^{2}=D^{2} c^{2} \partial t^{2}
\end{aligned}
$$

Arc-Length;

Two arc-lengths $\left(U_{\theta}, U_{\phi}\right)$ are associated with angles (θ, ϕ);

$$
\begin{array}{lll}
\theta=U_{\theta} / r & \text { and; } & \phi=U_{\phi} / w \\
r \partial \theta=\partial U_{\theta} & \text { and; } & w \partial \phi=\partial U_{\phi}
\end{array}
$$

Where; $w=r \sin (\theta) \quad$ and; $\quad z=r \cos (\theta)$

$$
\begin{array}{lll}
y=w \sin (\phi) & \text { and; } & x=w \cos (\phi) \\
x^{2}+y^{2}=w^{2} & \text { and; } & w^{2}+z^{2}=r^{2}
\end{array} \quad \text { and; } \quad x^{2}+y^{2}+z^{2}=r^{2}
$$

The wave-particle metric may be written as;

$$
c^{2} \partial T^{2}+r^{2} \partial \theta^{2}+r^{2} \sin ^{2}(\theta) \partial \phi^{2}+\partial R_{4}^{2} / D^{2}=D^{2} c^{2} \partial t^{2}
$$

Dimensions;

The particle dimensions of space-time are; $\quad(x, y, z, t)$ or $(r, \theta, \phi,-t)$
The wave dimensions of space-time are; $\quad(x, y, z, T)$ or $(r, \theta, \phi,-T)$

The Reissner-Nordström Metric;

The deformation ratio is; $\quad D^{2}=r_{8}{ }^{2} / r_{7}{ }^{2}=1-r_{1}{ }^{2} / r_{7}{ }^{2}+r_{3}{ }^{2} / r_{7}{ }^{2}$
Assume; $\quad r_{7}=r$ and: $r_{3}=r_{Q} \quad$ and: $r_{1}{ }^{2}=r r_{s}$
Where; r_{Q} is the electric length scale
r_{s} is the Schwarzschild radius
Giving; $\quad D^{2}=r_{8}^{2} / r_{7}{ }^{2}=1-r_{5} / r+r_{Q}{ }^{2} / r^{2}$
Assume; $\quad \partial R_{4}=\partial r$
Giving the Reissner-Nordström metric; $c^{2} \partial T^{2}+r^{2} \partial \theta^{2}+r^{2} \sin ^{2}(\theta) \partial \phi^{2}+\partial r^{2} / D^{2}=D^{2} c^{2} \partial t^{2}$
The Schwarzschild Metric;
If; $\quad r_{Q}=0 \quad$ Then; $D^{2}=D_{s}{ }^{2}=1-r_{s} / r$
Giving the Schwarzschild metric;

$$
c^{2} \partial T^{2}+r^{2} \partial \theta^{2}+r^{2} \sin ^{2}(\theta) \partial \phi^{2}+\partial r^{2} / D_{s}^{2}=D_{s}^{2} c^{2} \partial t^{2}
$$

Conclusion;

Two types of displacement are "length scale" and "incremental distance". Vectors representing each type act upon a common point giving the Reissner-Nordström metric.

