33 Reissner-Nordström Vectors

Displacement may be represented as a vector. Two types of displacement are "length scale" and "incremental distance". Vectors representing each type act upon a common point. Ratios of components of each type may be related. Assume that the common point has vibration. Relating components will give the Reissner-Nordström metric.

Displacement Vectors;

Where;

Two 4D vectors of displacement share a common origin. One vector (r) represents "length scale" and the other vector (R) represents "incremental distance". The vectors are defined as;

 $r = r_1 e_{11} + r_2 e_{12} + r_3 e_{13} + r_4 e_{14}$ $R = \partial R_1 e_{21} + \partial R_2 e_{22} + \partial R_3 e_{23} + \partial R_4 e_{24}$ $e_{n1}, e_{n2}, e_{n3}, e_{n4} \text{ are directional vectors (unit vectors) in 4D}$ (each vector has a unique frame of reference) $r_1, r_2, r_3, r_4 \text{ are components of length}$ $\partial R_1, \partial R_2, \partial R_3, \partial R_4 \text{ are components of incremental displacement}$

The vectors have magnitude; $|\mathbf{r}| = r_5$

$$|\mathbf{R}| = \partial R_5$$

The components are related to magnitudes; $r_1^2 + r_2^2 + r_3^2 + r_4^2 = r_5^2$

$$\partial R_1^2 + \partial R_2^2 + \partial R_3^2 + \partial R_4^2 = \partial R_5^2$$

Sub-components (r_6 , r_7 , r_8) and (∂R_6 , ∂R_7 , ∂R_8) are related as;

$$r_{6}^{2} = r_{5}^{2} - r_{4}^{2} = r_{7}^{2} + r_{3}^{2} \qquad \partial R_{6}^{2} = \partial R_{5}^{2} - \partial R_{4}^{2} = \partial R_{7}^{2} + \partial R_{3}^{2}$$

$$r_{7}^{2} = r_{6}^{2} - r_{3}^{2} = r_{1}^{2} + r_{2}^{2} \qquad \partial R_{7}^{2} = \partial R_{6}^{2} - \partial R_{3}^{2} = \partial R_{1}^{2} + \partial R_{2}^{2}$$

$$r_{8}^{2} = r_{6}^{2} - r_{1}^{2} = r_{2}^{2} + r_{3}^{2} \qquad \partial R_{8}^{2} = \partial R_{6}^{2} - \partial R_{1}^{2} = \partial R_{2}^{2} + \partial R_{3}^{2}$$

The Deformation Ratio;

A massive and charged object is assumed to deform surrounding space-time by a constant ratio (D);

$$D = r_8/r_7$$

Sub-components give;

$$r_6^2 = r_8^2 + r_1^2 = r_7^2 + r_3^2$$
$$r_8^2 = r_7^2 - r_1^2 + r_3^2$$

Giving;

$$D^{2} = r_{8}^{2}/r_{7}^{2} = 1 - r_{1}^{2}/r_{7}^{2} + r_{3}^{2}/r_{7}^{2}$$

The General Metric;

The general metric relates incremental components to the incremental magnitude;

$$\partial R_1^2 + \partial R_2^2 + \partial R_3^2 + \partial R_4^2 = \partial R_5^2$$

Vibration;

Assume that the object vibrates having a mean velocity of vibration (v₅); v₅ = $\partial R_5 / \partial t_5$ Giving the "vibrational metric"; $\partial R_1^2 + \partial R_2^2 + \partial R_3^2 + \partial R_4^2 = v_5^2 \partial t_5^2$

Deformation;

The constant ratio of deformation (D) is related to other ratios of deformation;

$$D = \partial t_5 / \partial t = v_5 / c = \partial R_1 / \partial \lambda = \partial R_2 / \partial U_{\theta} = \partial R_3 / \partial U_{\phi}$$

Where; c is the light constant

$\partial\lambda$ is incremental wave-length	$(\partial \lambda \partial f = c)$
∂f is incremental wave-frequency	$(\partial f = 1/\partial T)$
ot is "incremental particle time"	

 ∂T is "incremental wave time"

- U_{θ} is arc length associated with angle ($\theta)$
- U_φ is arc length associated with angle ($\varphi)$

The vibrational metric is;

$$\partial R_1^2 + \partial R_2^2 + \partial R_3^2 + \partial R_4^2 = v_5^2 \partial t_5^2$$

Substituting with deformation gives the "wave-particle metric";

$$D^{2}\partial\lambda^{2} + D^{2}\partial U_{\theta}^{2} + D^{2}\partial U_{\phi}^{2} + \partial R_{4}^{2} = (D^{2}c^{2})(D^{2}\partial t^{2})$$
$$c^{2}\partial T^{2} + \partial U_{\theta}^{2} + \partial U_{\phi}^{2} + \partial R_{4}^{2}/D^{2} = D^{2}c^{2}\partial t^{2}$$

Arc-Length;

Two arc-lengths (U_{θ} , U_{φ}) are associated with angles (θ , φ);

$$\begin{array}{ll} \theta = U_{\theta}/r & \text{and}; & \varphi = U_{\varphi}/w \\ r\partial\theta = \partial U_{\theta} & \text{and}; & w\partial\varphi = \partial U_{\varphi} \end{array}$$

$$Where; w = rsin(\theta) & \text{and}; & z = rcos(\theta) \\ y = wsin(\varphi) & \text{and}; & x = wcos(\varphi) \\ x^{2} + y^{2} = w^{2} & \text{and}; & w^{2} + z^{2} = r^{2} & \text{and}; & x^{2} + y^{2} + z^{2} = r^{2} \end{array}$$

The wave-particle metric may be written as;

$$c^{2}\partial T^{2} + r^{2}\partial \theta^{2} + r^{2}\sin^{2}(\theta)\partial \phi^{2} + \partial R_{4}^{2}/D^{2} = D^{2}c^{2}\partial t^{2}$$

Dimensions;

The particle dimensions of space-time are;	(x, y, z, t) or (r, θ, φ, -t)
The wave dimensions of space-time are;	(x, y, z, T) or (r, θ, φ, -T)

The Reissner-Nordström Metric;

The deformation ratio is; $D^2 = r_8^2/r_7^2 = 1 - r_1^2/r_7^2 + r_3^2/r_7^2$ Assume; $r_7 = r$ and: $r_3 = r_Q$ and: $r_1^2 = rr_s$

Where; r_Q is the electric length scale

r_s is the Schwarzschild radius

Giving;

$$D^2 = r_8^2/r_7^2 = 1 - r_s/r + r_Q^2/r^2$$

Assume; $\partial R_4 = \partial r$

Giving the Reissner-Nordström metric; $c^2 \partial T^2 + r^2 \partial \theta^2 + r^2 \sin^2(\theta) \partial \varphi^2 + \partial r^2/D^2 = D^2 c^2 \partial t^2$

The Schwarzschild Metric;

If:
$$r_Q = 0$$
 Then; $D^2 = D_s^2 = 1 - r_s/r$
Giving the Schwarzschild metric: $c^2 \partial T^2 + r^2 \partial \theta^2 + r^2 \sin^2(\theta) \partial \varphi^2 + \partial r^2/D_s^2 = D_s^2 c^2 \partial t^2$

Conclusion;

Two types of displacement are "length scale" and "incremental distance". Vectors representing each type act upon a common point giving the Reissner-Nordström metric.