08 The Compton Vector

The Compton Effect discovered in 1923 represents the interaction between a photon (x ray) and an electron. The interaction is elastic; the photon is "scattered", and the electron "recoils".

The interaction includes force. The "interactive force" may be represented as a vector. If two conditions apply, then the components will also give the Compton equation.

Energy is transferred from the x-ray photon to the electron. The medium of transfer is assumed to be a "transfer photon". Components of the Compton Vector will give mass dilation (associated with the electron) and wave-length contraction (associated with the transfer photon).

The Compton Equation;

The Compton equation defines the change of wavelength of an x-ray photon after collision with an electron;

$$
\lambda_{2}-\lambda_{1}=\left(\mathrm{h} / \mathrm{m}_{\mathrm{e}} \mathrm{c}\right)(1-\cos \theta)
$$

Where; λ_{2} is the wavelength of the x-ray photon after the interaction
λ_{1} is the wavelength of the x-ray photon before the interaction; $\lambda_{2}>\lambda_{1}$
h is the Plank constant
c is the light constant
m_{e} is the rest mass of an electron
θ is the scattering angle of the photon

The Transfer Photon;

Energy is transferred from the x-ray photon to the electron. Assume the transfer is mediated by a "transfer photon". The energy (E_{4}) of the transfer photon is;

$$
E_{4}=h c / \lambda_{3}
$$

Where; $\lambda_{3}=\lambda_{2}-\lambda_{1}$
The Compton equation may also be written as; $1 / 2 \mathrm{~m}_{\mathrm{e}} \mathrm{c}\left(\lambda_{3} / h\right)=\operatorname{Sin}^{2}(1 / 2 \theta)$

The Compton Vector;

A force acts upon the transfer photon. This force may be represented as a three dimensional "interaction vector" of force (F) which is the Compton Vector;

$$
F=F_{1} \boldsymbol{i}+F_{2} \boldsymbol{j}+F_{3} \boldsymbol{k}
$$

Where; $\boldsymbol{i}, \boldsymbol{j}, \boldsymbol{k}$ are directional vectors (orthogonal unit vectors)

$$
F_{1}, F_{2}, F_{3} \text { are scalar components of force }
$$

The vector has a magnitude;

$$
|F|=F_{4}
$$

The components are related to magnitude;

$$
\mathrm{F}_{1}^{2}+\mathrm{F}_{2}^{2}+\mathrm{F}_{3}^{2}=\mathrm{F}_{4}^{2}
$$

A sub-component $\left(F_{5}\right)$ is related as;

$$
\mathrm{F}_{5}^{2}=\mathrm{F}_{1}^{2}+\mathrm{F}_{2}^{2}=\mathrm{F}_{4}^{2}-\mathrm{F}_{3}^{2}
$$

The sub-component may be called the "force of materialization".

Component Geometry;

The vector (F) has components and a sub-component arranged as geometry;

$$
\begin{array}{lll}
F_{1}=F_{5} \operatorname{Cos}(A) & \text { and } & F_{2}=F_{5} \operatorname{Sin}(A) \\
F_{5}=F_{4} \operatorname{Cos}(B) & \text { and } & F_{3}=F_{4} \operatorname{Sin}(B)
\end{array}
$$

Two conditions are required for interaction (and materialization);
Condition 1; $\quad \mathrm{A}=\mathrm{B}$

Condition 2; $\quad B+1 / 2 \theta=1 / 2 \pi$

Giving; $\operatorname{Cos}(B)=\operatorname{Sin}(1 / 2 \theta)$

Materialization;

Energy may "condense" (materialize) into matter. The force (F_{5}) of materialization has a wave representation (associated with the transfer photon) and a particle representation (associated with the dynamic electron);

$$
\mathrm{F}_{5}=\mathrm{hc} / \lambda_{3} \lambda_{0}=1 / 2 \mathrm{mc}^{2} / \lambda_{3}
$$

Giving the De Broglie equation of materialization;

$$
m v_{0}=h / \lambda_{0}
$$

Where; m is dynamic mass
v_{0} is velocity of materialization; $v_{0}=1 / 2 c$
λ_{0} is wave-length of materialization

Definitions of Force;
Components of force may be defined as;

$$
\begin{array}{lll}
\mathrm{F}_{1}=1 / 2 \mathrm{~m}_{\mathrm{e}} \mathrm{c}^{2} / \lambda_{3} & \mathrm{~F}_{2}=1 / 2 \mathrm{mvc} / \lambda_{3} & \mathrm{~F}_{3}=\mathrm{hv} / \lambda_{3}^{2} \\
\mathrm{~F}_{4}=\mathrm{hc} / \lambda_{3}^{2} & \mathrm{~F}_{5}=\mathrm{hc} / \lambda_{3} \lambda_{0}=1 / 2 \mathrm{mc}^{2} / \lambda_{3} &
\end{array}
$$

Mass Dilation;

Mass dilation is associated with the electron. Vector geometry gives;

$$
\begin{array}{lll}
\operatorname{Cos}(A)=F_{1} / F_{5}=m_{e} / m & \text { and; } & \operatorname{Sin}(A)=F_{2} / F_{5}=v / c \\
\operatorname{Cos}^{2}(A)+\operatorname{Sin}^{2}(A)=1 & \\
m_{e}^{2} / m^{2}+v^{2} / c^{2}=1 &
\end{array}
$$

giving mass dilation; $\quad m=\gamma m_{e}$
Where; γ is the Lorentz factor; $\gamma=1 /\left(1-v^{2} / c^{2}\right)^{1 / 2}$

Length Contraction;

Length contraction is associated with the transfer photon. Vector geometry gives;

$$
\begin{array}{lll}
\operatorname{Cos}(B)=F_{5} / F_{4}=\lambda_{3} / \lambda_{0} & \text { and; } & \operatorname{Sin}(B)=F_{3} / F_{4}=v / c \\
\operatorname{Cos}^{2}(B)+\operatorname{Sin}^{2}(B)=1 & \\
\lambda_{3}^{2} / \lambda_{0}^{2}+v^{2} / c^{2}=1 &
\end{array}
$$

giving length contraction; $\quad \lambda_{3}=\lambda_{0} / \gamma$

Where; λ_{0} is the wavelength of condensation

The Force Equation;

Two conditions for interaction are required.

From condition 1; $\quad A=B$

$$
\begin{aligned}
& \operatorname{Cos}(\mathrm{A})=\operatorname{Cos}(\mathrm{B}) \\
& \mathrm{F}_{1} / \mathrm{F}_{5}=\mathrm{F}_{5} / \mathrm{F}_{4}
\end{aligned}
$$

Giving;

$$
F_{1} F_{4}=F_{5}^{2}
$$

From condition 2; $\quad \operatorname{Cos}(B)=\operatorname{Sin}(1 / 2 \theta)=F_{5} / F_{4}$

$$
\begin{aligned}
& \operatorname{Sin}^{2}(1 / 2 \theta)=F_{5}^{2} / F_{4}^{2} \\
& \operatorname{Sin}^{2}(1 / 2 \theta)=\left(F_{1} F_{4}\right) / F_{4}^{2}
\end{aligned}
$$

The force equation is; $\quad \operatorname{Sin}^{2}(1 / 2 \theta)=F_{1} / F_{4}$
Force definition gives; $\operatorname{Sin}^{2}(1 / 2 \theta)=\left(1 / 2 m_{e} c^{2} / \lambda_{3}\right) /\left(h c / \lambda_{3}{ }^{2}\right)$

Reducing to the Compton equation;

$$
\operatorname{Sin}^{2}(1 / 2 \theta)=1 / 2 m_{e} c\left(\lambda_{3} / h\right)
$$

Conclusion;

An "interactive force" may be represented as a vector. If two conditions apply, then vector components will give the Compton equation.

Energy is transferred from the x-ray photon to the electron. The medium of transfer is assumed to be a "transfer photon". Components of the "Compton Vector" will give mass dilation (associated with the electron) and wave-length contraction (associated with the transfer photon).

