47 The Geometry of Force

Force may be represented as a vector. A 4D vector of force has four components, it also has four "associated components" (including magnitude), giving eight "parts" of force.

The parts of a 4D vector may be arranged to form five "connected plane surfaces". Each surface is a right triangle and is associated with a "primary angle". The primary angles are related to vector parts as "vector geometry". This gives a vector of force having a "geometry of force".

If one angular condition is true, then relationships between various parts and primary angles may be represented as "scalar equations of force".

Each part of force may be associated with an energy. If definitions of force and energy apply, then seven "systems of energy" may be represented. The seven systems are:

- Klein-Gordon energies (wave-particle energies)
- Stefan-Boltzmann energies (radiant energies)
- Bohr energies (orbital energies)
- Compton energies (photo-electric energies)
- energies of mass dilation
- Plank energies (thermo-gravitational energies)
- Hawking energies (photo-thermo-gravitational energies)

The Force Vector;

Force may be represented as a 4D vector (**F**): $\mathbf{F} = F_1 \mathbf{e_1} + F_2 \mathbf{e_2} + F_3 \mathbf{e_3} + F_4 \mathbf{e_4}$

Where: F_1 , F_2 , F_3 , F_4 are components of force (scalars)

e1, e2, e3, e4 are basis vectors (unit vectors)

Vector Parts;

The "vector parts" include the all the components, also a magnitude, and "sub-components".

The force vector has a magnitude:	<i>F</i> = F ₅
The magnitude is related to components:	$F_5^2 = F_1^2 + F_2^2 + F_3^2 + F_4^2$
The sub-components (F_6 , F_7 , F_8) are:	$F_6^2 = F_7^2 + F_3^2 = F_5^2 - F_4^2$
	$F_7^2 = F_1^2 + F_2^2 = F_6^2 - F_3^2$
	$F_8^2 = F_2^2 + F_3^2 = F_6^2 - F_1^2$

Angular Geometry;

The force vector has five plane "surfaces". Each surface is a right triangle and includes a "primary angle" $(A_1, A_2, A_3, A_4, A_5)$. Each primary angle "represents" a plane surface. The angles are related to vector parts as "angular geometry":

$F_1 = F_7 Cos(A_1)$	$F_2 = F_7Sin(A_1)$
$F_7 = F_6 Cos(A_2)$	$F_3 = F_6 Sin(A_2)$
$F_6 = F_5 Cos(A_3)$	$F_4 = F_5Sin(A_3)$
$F_1 = F_6Cos(A_4)$	$F_8 = F_6 Sin(A_4)$
$F_2 = F_8 Cos(A_5)$	$F_3 = F_8Sin(A_5)$

The Force Equations;

Assume one restriction:	$A_2 = A_3$			
Giving:	$Cos(A_2) = Cos(A_3)$			
From angular geometry:	$F_7/F_6 = F_6/F_5$			
Giving:	$F_5F_7 = F_6^2$			
From angular geometry:	$F_1 = F_6 Cos(A_4)$	and:	$F_8 = F_6Sin(A_4)$	
	$F_1^2 = F_6^2 C_{A4}^2$	and:	$F_8^2 = F_6^2 S_{A4}^2$	
The force equations are:	$F_1^2 = F_5 F_7 C_{A4}^2$	and:	$F_8{}^2 = F_5 F_7 S_{A4}^2$	

Klein-Gordon Energies;

The general force equation is: $F_1^2 = F_5 F_7 C_{A4}^2$

Assume:

 $F_{1}^{2} = F_{6}^{2}C_{A4}^{2}$ $S_{A4} = v/c$ $C_{A4}^{2} = 1 - S_{A4}^{2} = 1 - v^{2}/c^{2}$

Giving:

 $F_1^2 = F_6^2(1 - v^2/c^2)$

Where: v is velocity

c is the light constant

Assume force definitions: $F_1 = E_1/\lambda$ and: $F_6 = E_6/\lambda$

	,	
Assume energy definitions:	$E_1 = m_0 vc$ and:	$E_6 = \hbar f$
Where: m_0 is rest mass		
f is frequency		
λ is wavelength		
为 is the reduced Plank	constant	
Giving squares of force:	$(m_0 vc/\lambda)^2 = (\hbar f/\lambda)^2 (1 - v)^2$	/²/c²)
Giving squares of energy:	$(m_0vc)^2 = (\hbar f)^2 (1 - v^2/c^2)$)
	$(v^2/c^2)(\hbar f)^2 + (m_0vc)^2 =$	(ђ ƒ)²
	$\hbar^2 f^2 + m_0^2 c^4 = c^2 \hbar^2 (f^2 / v^2)$	2)
A frequency operator is: $\partial^2/\partial t$	$f^{2} = f^{2}$	
A distance operator is: $\partial^2/\partial R$	2	
A ratio of operators is: $(\partial^2/\partial t)$	$(\partial^2/\partial R^2) = \partial R^2/\partial t^2 = v^2$	
A "ratio of motion" is: $f^2/v^2 =$	$= (\partial^2 / \partial t^2) (\partial^2 / \partial R^2) / (\partial^2 / \partial t^2)$	$= \partial^2 / \partial R^2$
Squares of energy are:	$\hbar^2 f^2 + m_0^2 c^4 = c^2 \hbar^2 (f^2 / v^2)$	2)
Operator substitution:	$\hbar^2(\partial^2/\partial t^2) + m_0^2 c^4 = c^2 \hbar$	$^{2}(\partial^{2}/\partial R^{2})$
A wave function (ψ) interacts	with the energy squares:	$\mathfrak{H}^2(\partial^2\psi/\partial t^2) + m_0{}^2c^4\psi = c^2\mathfrak{H}^2(\partial^2\psi/\partial R^2)$
The Klein-Gordon equation m	ay be written as:	$0 = (1/c^2)(\partial^2 \psi/\partial t^2) - \partial^2 \psi/\partial R^2 + (m_0^2 c^2/\hbar^2)\psi$
A wavelength operator is: ∂^2/d	$\partial \lambda^2 = \partial^2 / c^2 \partial t^2$ giving:	$c^2 = \partial \lambda^2 / \partial t^2 = \lambda^2 f^2$
A "combined operator" (<u>H</u> ²) ir	cludes both wavelength	and distance operators: $\underline{H}^2 = \frac{\hbar^2}{c^2} (\frac{\partial^2}{\partial \lambda^2} - \frac{\partial^2}{\partial R^2})$
The Klein-Gordon energy squa	res may be written as:	$\underline{\mathbf{H}}^2 = -\mathbf{m}_0^2 \mathbf{c}^4$
The "Klein-Gordon energy" is:		$\underline{H} = im_0 c^2$
The Klein-Gordon "root equat	ion" is:	$\underline{H}\psi = i\psi m_0 c^2$
Stefan-Boltzmann Energ	gies;	
The general force equation is:	$E_{1}^{2} - E_{2}E_{2}C^{2}$	

The general force equation is: $F_1^2 = F_5 F_7 C_{A4}^2$

Assume force definitions: $F_1 = E_1^2/c\hbar$ and: $F_5 = E_5/r$ and: $F_7 = E_7/r$

Where: ħ is the reduced Plank constant

Giving forces:	$E_1^4/c^2\mathfrak{h}^2 = (E_5/r)(E_7/r)C_{A4}^2$		
Assume energy definitions:	E_1 is thermal energy of emitter: $E_1 = \frac{1}{2}\pi kT$		
	(where; k is the Boltzmann constant)		
	E_5 is total energy of emitter: $E_5 = \frac{1}{2}hf$		
	E ₇ is radiant energy		
Giving an equation of forces:	$(\frac{1}{2}\pi kT)^{4}/c^{2}h^{2} = (\frac{1}{2}hf/r)(E_{7}/r)C^{2}_{A4}$		
	$4\pi^{2}(\frac{1}{2}\pi kT)^{4}/c^{2}h^{2} = (\frac{1}{2}hf/r)(E_{7}/r)C^{2}_{A4}$		
	$8\pi^2(\frac{1}{2}\pi kT)^4/c^2h^3 = (fE_7/r^2)C^2_{A4}$		
	$2\pi (\frac{1}{2}\pi kT)^4/c^2h^3 = (fE_7/4\pi r^2)C^2_{A4}$		
Power (P7) of radiation:	$P_7 = fE_7$		
Emissive surface area (A7) is:	$A_7 = 4\pi r^2$ (where; r is the radius of the emitter)		
Giving:	$2\pi (\frac{1}{2}\pi kT)^4/c^2h^3 = (P_7/A_7)C^2_{A4}$		
Brightness (J ₇) is power per em	issive area: $J_7 = P_7/A_7$		
Giving:	$2\pi (\frac{1}{2}\pi kT)^4/c^2h^3 = J_7C_{A4}^2$		
	$2\pi^{5}k^{4}T^{4}/(16c^{2}h^{3}) = J_{7}C^{2}_{A4}$		
	$2\pi^{5}k^{4}T^{4}/c^{2}h^{3} = 16J_{7}C^{2}_{A4}$		
Assume:	$S_{A4} = v/c$		
	$C^{2}_{A4} = 1 - S^{2}_{A4} = 1 - v^{2}/c^{2}$		
Where: v is average velocity as	sociated with thermal energy		
c is the light constant			
Giving:	$2\pi^{5}k^{4}T^{4}/c^{2}h^{3} = 16J_{7}(1 - v^{2}/c^{2})$		
assume thermal velocity:	$v = \frac{1}{4}c$		
Giving:	$2\pi^{5}k^{4}T^{4}/c^{2}h^{3} = J_{7}(16 - 1)$		
	$2\pi^{5}k^{4}T^{4}/15c^{2}h^{3} = J_{7} = \sigma T^{4}$		

Where: σ is the Stefan-Boltzmann constant: $\sigma = 2\pi^5 k^4/15c^2h^3$

Bohr Energies;

Bohr energies are restricted to the hydrogen atom or to ions with a single electron.

Bohr forces require that two angular conditions apply to the force vector:

	$A_1 = A_2$		and:	$A_2 = A_3$	3
Giving:	$Cos(A_1) = Cos(A_1)$	A ₂)	and:	Cos(A ₂) = Cos(A ₃)
From angular geometry:	$F_1/F_7 = F_7/F_6$		and:	$F_7/F_6 = F_6/F_5$	
Giving:	$F_1F_6 = F_7^2$		and:	$F_{5}F_{7} =$	F_6^2
The combined conditions give:	$F_6^2 = F_7^4 / F_1^2 = F_7^4$	₅F ₇			
Giving the Bohr force equation	: $F_7^3 = F_5 F_1^2$				
	$F_7^3 = F_5 F_6^2 C_{A4}^2$				
Assume force definitions:	$F_7 = E_7/\lambda$	and:	$F_5 = E_5/\lambda$	and:	$F_6 = E_6/\lambda$
Giving forces:	$(E_7/\lambda)^3 = (E_5/\lambda)(E_6^2/\lambda^2)C_{A4}^2$				
Giving energies:	$E_7^3 = E_5 E_6^2 C_{A4}^2$				
Assume energy definitions:	E_5 is massive energy: $E_5 = \frac{1}{2}m_ec^2$				
	E7 is emissive energy:		$E_7 = hf$		
	E ₆ is electric en	ergy:	$E_6 = k_e q_1 q_2 / r$		
Where: m_e is the mass of the electron					
k_e is the electric field constant: $k_e = 1/(4\pi\epsilon_0)$					

 q_1 is the charge of an electron; $q_1 = -e$

 q_2 is the charge of the nucleus: $q_2 = Ze$

r is the average radial distance between the nucleus and the electron

The Bohr energies are:

 $E_{7}^{3} = E_{5}E_{6}^{2}C_{A4}^{2}$ $(hf)^{3} = (\frac{1}{2}m_{e}c^{2})(k_{e}q_{1}q_{2}/r)^{2}C_{A4}^{2}$ $(hf)^{3} = (\frac{1}{2}m_{e}c^{2})(Z^{2}e^{4}/16\pi^{2}\epsilon_{0}^{2}r^{2})C_{A4}^{2}$

The Geometry of Force

$$(hf)(hc/\lambda)^{2} = (\frac{1}{2}m_{e}c^{2})(Z^{2}e^{4}/4\epsilon_{0}{}^{2})(1/4\pi^{2}r^{2})C^{2}{}_{A4}$$
$$(hf)(h^{2}c^{2}/\lambda^{2}) = (m_{e}c^{2}Z^{2}e^{4}/8\epsilon_{0}{}^{2})(1/4\pi^{2}r^{2})C^{2}{}_{A4}$$
$$(hf)(h^{2}/\lambda^{2}) = (m_{e}Z^{2}e^{4}/8\epsilon_{0}{}^{2})(1/4\pi^{2}r^{2})C^{2}{}_{A4}$$

Assume: $S_{A4}^2 = v_2/v_1$ giving: $C_{A4}^2 = 1 - v_2^2/v_1^2$ (where; v_1 , v_2 are initial and final velocities) The Bohr energies become: (hf)(h^2/λ^2) = ($m_eZ^2e^4/8\varepsilon_0^2$)($1/4\pi^2r^2$)($1 - v_2^2/v_1^2$) Quantization rules are: Rule 1: $n_1v_1 = c$ Rule 2: $n_2v_2 = c$ Rule 3: $2\pi r = n_1\lambda$ Where: n_1 , n_2 are integers The Bohr energies become: (hf)(h^2/λ^2) = ($m_eZ^2e^4/8\varepsilon_0^2$)($1/n_1^2\lambda^2$)($1 - n_1^2/n_2^2$) hf = ($m_eZ^2e^4/8\varepsilon_0^2h^2$)($1/n_1^2 - 1/n_2^2$) hc/ $\lambda = (m_eZ^2e^4/8\varepsilon_0^2h^2)(1/n_1^2 - 1/n_2^2)$ In the case of hydrogen: Z = 1

Giving: $1/\lambda = (m_e e^4/8\epsilon_0^2 h^3 c)(1/n_1^2 - 1/n_2^2) = R_H(1/n_1^2 - 1/n_2^2)$

Where: R_H is the Rydberg constant: $R_H = m_e e^4 / 8\epsilon_0^2 h^3 c$

Compton Energies:

The Compton equation represents photo-electric interaction. This interaction may be represented as a vector of force. Parts of force give equation:

	$F_8 = F_6 Sin(A_4)$		
	$F_8^2 = F_5 F_7 S_{A4}^2$		
"Compton force" requires:	$F_8 = F_7$		
Which also implies:	$F_1 = F_3$	and:	$A_1 + A_5 = \frac{1}{2}\pi$
Giving:	$\mathbf{F}_7 = \mathbf{F}_5 \mathbf{S}^2_{A4}$		
	$F_7\lambda = (F_5\lambda)S^2_{A4}$		
Giving energies:	$E_7 = E_5 S^2{}_{A4}$		

Assume energy definitions:	E ₇ is massive energy:	$E_7 = \frac{1}{2}m_ec^2$	
	E₅ is photonic energy:		
Giving:	$\frac{1}{2}m_{e}c^{2} = (hc/\lambda_{5})S^{2}_{A4}$		
8·	$m_e c = (4\pi\hbar/\lambda_5)S^2_{A4}$		
Assume: A₄ = ½θ		ing anglo	
	Where: θ is the scatter		
Giving the Compton equation:	λ ₅ = (4πϦ/m _e c)S² _{½θ}		
Where: $\lambda_5 = \lambda_2 - \lambda_1$			
Mass Dilation:			
From force geometry:	$F_6^2 = F_1^2 + F_8^2$		
	$1 = (F_1/F_6)^2 + (F_8/F_6)^2$		
Assume force definitions:	$F_1 = m_0 c^2 / \lambda$		
	$F_8 = mvc/\lambda = hc/\lambda^2$ (f	rom De Broglie moment	cum)
	$F_6 = mc^2/\lambda$		
giving mass dilation:	$1 = (m_0/m)^2 + (v/c)^2$		
Where: m_0 is rest mass			
m is dynamic mass			
v is scalar velocity			
c is the light constant			
Plank Energies:			
Thermo-gravitational energies	may be obtained from th	ne force vector.	
A force equation is:	$F_1^2 = F_5 F_7 C_{A4}^2$		
Assume: S _{A4} = v/c giving:	$C^{2}_{A4} = 1 - v^{2}/c^{2}$ (where	e; v is velocity)	
The force equation becomes:	$F_1^2 = F_5 F_7 (1 - v^2/c^2)$		
Assume force definitions:	$F_1 = E_1/r$	$F_5 = E_5^2/hc$	$F_7 = E_7/r$
Assume energy definitions:	$E_1 = m_1 c^2$	$E_5 = k_B T_P$	$E_7 = Gm_7^2/r$

Giving:	$(m_1c^2/r)^2 = (k_B^2T_P^2/hc)(Gm_7^2/r^2)(1-v^2/c^2)$
	$(m_1c^2)^2 = (k_B^2 T_P^2/hc)Gm_7^2(1-v^2/c^2)$
Mass dilation gives:	$m_1^2 c^4 = (k_B^2 T_P^2 / hc) G m_1^2$
Giving Plank temperature:	$T_P^2 = hc^5/Gk_B^2$

Hawking Energies:

Photo-thermo-gravitational energies may be obtained from the force vector.

A force equation is:	$F_1^2 = F_5 F_7 C_{A4}^2$		
Assume force definitions:	$F_1 = E_1/\lambda$	$F_5 = (v/c)E_5/\lambda$	$F_7 = E_7/\lambda$
Assume energy definitions:	E ₁ = ½ħ <i>f</i>	$E_5 = k_B T_H$	$E_7 = Gm_7^2/\lambda$
Giving forces:	$(\frac{1}{2}\hbar f/\lambda)^2 = (v/c)(k_B T_H/\lambda)$	$(Gm_7^2/\lambda^2)(1-v^2/c^2)$	
	$(\hbar f/\lambda)^2 = 4(v/c)(k_B T_H/\lambda)$	(Gm ₇ ²/λ²)(1- v²/c²)	
Mass dilation gives:	$(\hbar f/\lambda)^2 = 4(v/c)(k_B T_H/\lambda)(Gm_0^2/\lambda^2)$		
Where: $m_0^2 = m_7^2 (1 - v^2/c^2)$			
	$(hc/2\pi\lambda^2)^2 = 4(v/c)(k_BT_F)$	$_{\rm H}/\lambda)({\rm Gm_0}^2/\lambda^2)$	
De Broglie momentum gives:	$(m_0 vc/2πλ)(hc/2πλ^2) =$	$4(v/c)(k_BT_H/\lambda)(Gm_0^2/\lambda^2)$	
	$(m_0 c^2 / \lambda)(\hbar c / \lambda^2) = 8\pi (k_B T_H / \lambda)(Gm_0^2 / \lambda^2)$		
	(m ₀ c ²)(Ϧc) = 8π(k _B T _H)(Gm ₀ ²)		
	$βc^3 = 8πk_BT_HGm_0$		
Hawking temperature is:	T _H = Ϧc³/8πk _B Gm₀		

Conclusion:

A vector of force has a "geometry of force". If one angular condition is true, then relationships between various "parts of force" and primary angles may be represented as "scalar equations of force".

Each part of force may be associated with an energy. If definitions of force and energy apply, then seven "equations of energy" may be represented.