Physics from Axioms.

Mr. Willem F. Esterhuyse

Email: talanum1@yahoo.com

Abstract

:

We introduce a definition of Time and Photons from four Axioms. Basically you take a 4dimensiona I manifold, transform them into two superimposed Riemann Spheres and isolate a circle (call this Pp) in one of the spheres. Then one specifies the circle to turn by a unit amount (the turn is an quantum rotation: turn from state A to state B without visiting the in between states) as measured along the circle, if the Pp encounters a space point. Space fluctuates and expands so this does not give a static circle Pp. The circle's infinity point stays at the north pole of the Riemann Sphere for any finite rotation since: infinity - constant = infinity. Using this one can define basic spacetime and from basic spacetime, Time can be defined if we require special particles to be in the particles of a clock. We go on to define photons and antiphotons. If we define antiphotons we are at a more efficient level of using resources (conservation of space implied by conservation of Energy). The model predicts that there is a direction in which photons (from the same process and with the same orientation) are never emitted. The model explains why photons have momentum. The model assumes there are positive and negative events of spacetime and this is the reason why one can choose a zero point (for coordinates) anywhere. We continue to define a pi-minus.

Keywords: time, photon, pi-minus.

Contents:

1. Defining Time.

2. Defining Photons and Anti-photons.

3. Defining a Pi-minus.

Bibliography.

1. Defining Time.

Here are the four axioms we are going to use:

A1: Complex numbers exists. Call this C.

A2: $x=x$

A3: $x+y=y+x$
$A 4$: A is a subset of B if B contains A and $B-A$ not $=$ the empty set.
The following definitions are stated and will be used:
Definitions: "C x C" means "Comlex plane Cartesian product Complex plane".
"RS <-> RS" means "Riemann sphere superimposed on Riemann sphere".
"quantum rotation" means "a rotation from state A to state B without visiting the states in between".

By "event" I will mean: "point in spacetime".
By "negative event" I will mean "a left out point in spacetime".
The format of the statements will be:
Index Statement
Reason
First we construct a Space. This space will be required in order to define a particle.
1 Construct $S=C$ <-> . A1, A2
1.1 S is 4 dimensional. 1
1.2 Set the components of $S=S_{1,2,3,4}$ in the following order: $\operatorname{Re}, \operatorname{Im}, \operatorname{Re}, \operatorname{Im}$. 1, A2

The reason that we could define this space is because of A1.
We define a particle called Pp next.
2 S can transform into two Riemann Spheres. A1, 1
3 Construct two Riemann Spheres of S, call it RS <-> RS = Pp. A1, 1
We define a circle along the Imaginary axis of the second RS: S_{4}.
4 Isolate a circle in the second RS namely S_{4} and call it P_{T}.
A1, 3
4.1 I'm going to use physical terminology below.

Declaration
4.2 Construct "physical space" $=\mathrm{S}_{\mathrm{P}}=\mathrm{CxC} / \mathrm{S}_{4}$.

A1, A2
This gives physical space with $\mathrm{S}_{\mathrm{p} 2}$ multiplied by i.
5 Let P_{T} advance by one (rotate relative to $\mathrm{S}_{1,2,3}$ by one as measured along the circle) if
encountering a space node and let the rotation be a quantum rotation. Call this "freq" $=T_{S}$
A1, 4, 4.2, A2

This rotation does not move infinity at the north pole of RS since: infinity - constant = infinity. This circle cannot have a charge of the particle Pp on it. Space fluctuates and stretches so this does not give a static P_{T}.

7 Define "Change in freq" by $\mathrm{T}_{\mathrm{Sf}}-\mathrm{T}_{\mathrm{Si}}$ 5
$8 \quad$ Let $S_{1,2}$ be perpendicular to $S_{3,4}$
11 Construct $\left\{\right.$ for all $n=1$ to $\left.N: n\left(T_{s f}-T_{s i}\right)_{n}\right\}$. Call this "Changes in freqs."
5,7

Now we can define a basic time interval:
12 Define "basic time interval" = Delta $t_{B}=1 /\left[(1 / N) \backslash\right.$ sum \limits_\{n=1\}^N $\left.n\left(T_{\text {sf }}-T_{\text {si }}\right)_{n}\right]$ 1-11, A3, A2

13 Construct $\mathrm{MxT}_{\mathrm{s}}, \mathrm{M}$ element of Natural Numbers subset of C .
5, A4

From these define "Basic time":
14 Define " Basic time" $=\mathrm{t}_{\mathrm{B}}=\left\{1 /\left[(1 / \mathrm{M})\left(\backslash \text { sum \limits_\{n=1\}^}{ }^{\wedge} M n \# T_{\mathrm{Sn}}\right)\right]\right\}^{*}$ Delta $\mathrm{t}_{\mathrm{B}} . \quad 12,5$,
A3

15 Couple t_{B} to every point of S_{p} and call the result "basic spacetime" $=B_{S T} .4 .2, A 2, A 2$
Now we can make a similar construction in order to define Time:

15 Construct $\mathrm{S}_{\mathrm{i}}=\mathrm{C}<->\mathrm{C}$.
16 Construct $R S$ <-> RS from S_{i}, call it Pp.
15.1, 2

17 Isolate a circle in Pp and call it P_{BT}.
A1, 16
18 Let P_{BT} advance by one (rotate relative to $\mathrm{S}_{\mathrm{i} 1,2,3}$ by one measure along the curve of the circle) when encountering a $B_{S T}$ event and let the rotation be a quantum rotation. Call this "freq2" $=\mathrm{T}_{\mathrm{BST}}$.

7, A2
19 Construct $\mathrm{KxT}_{\mathrm{BST}}$, K element of Natural Numbers, subspace of C .
18, A4
20 Define "Tim1" $=t_{1}=1 /\left[(1 / K)\left(\backslash\right.\right.$ sum \limits_\{n=1\}^K $\left.\left.n \# T_{B S T n}\right)\right]$.
A3, A2, 18
$21 \quad \mathrm{Pp}$ is in every particle of the clock. Requirement

22 Tim1 advances like a clock, it depends on the Pp in the clock and on the route in $\mathrm{B}_{\text {ST }}$.

In practice we only require that every particle of the clock has a circle with no charges on it that can serve as the particle clock.

2. Defining Photons and Anti-photons.

We go further to define photons. For this we need antiphotons as well. For this we need to define negative events of $B_{S T}$ (the origin may then be constructed anywhere.)
23.1 Construct negative points of physical space as: $S_{P_{-}}=(-C) x(-C) / I m\{-C\}$ A1
23.2 Couple $\left(-t_{B}\right)$ to every point of $S_{p-.}$ Call the result $B_{\text {ST-. }}$ 14,
23.1
23.3 Shift the origin of $B_{S T-}$ in $B_{S T}$ by an amount: min\{ distance of two adjacent events of $B_{S T}$ along any axis of $\left.\mathrm{B}_{\mathrm{ST}}\right\} / 2$ and do the same for all four directions. Call the result $\mathrm{CB}_{\mathrm{ST}}$. 23.2
23.4 Define the events and negative events of $\mathrm{CB}_{\text {ST }}$ to have closest neighbours in a helix for any direction in $\mathrm{CB}_{\text {ST }}$. This is not pictureable.

24 Define a constant $\mathrm{c}=\Delta \mathrm{S}_{\mathrm{P}} / \Delta \mathrm{t}_{\mathrm{B}}$ 4.2, A2
24.1 Let c be the maximum speed trough CBst i.e. the speed at which the particle sees no distance between succeeding events of $\mathrm{CB}_{\text {ST }}$.
4.2, 23.3
24.2 Construct $S=C<->C$

A1
24.2

A1

This way the particle and antiparticle may look identical except for phase difference of 180 degrees (as if turned through 180 degrees).

30 Construct from S_{AP} a $\mathrm{RS}_{\mathrm{AP}}<->\mathrm{RS}_{\mathrm{AP}}$. Call it $\underline{\mathrm{F}}_{\underline{1}}$.
31 Let $C_{B T}$ construct any vector in a $R S<->R S$ set $=F_{1}$, call it p. This is done by identifying four numbers in F_{1}. Call such particle $q \mathrm{Fp}_{1}$.
$3,18,4.1$
32
p is 4 dimensional
33 Construct the same vector as in $31 \times(-1)$ in $\underline{F}_{\underline{1}}$. Call such particle $\underline{q F p}_{\underline{1}}$.
31, 28

35 Set $F p_{1}=q F p_{1}$ and leave out 2 distinguised events just below the unit circle crossing a curled up axis. Call the two points A, B.

36 Set $\underline{F p}_{\underline{1}}=\underline{q F p_{1}}$ and add 2 distinguised events just below the unit circle crossing a curled up axis. Call the two points $\underline{A}, \underline{B}$.

37 Let $\mathrm{S}_{1}, \mathrm{~S}_{2}$ of Fp_{1} look like in Figure 1.1
35

Figure 1.1

The little circles represent events of the circle that was left out. The figure shows an Fp_{1}. The diamonds are positive events of CB $_{\text {st }}$ and the circles with dots in the centre are negative events of $\mathrm{CB}_{\text {st }}$, as the particle sees them. The little circles denotes passive events, this is accompliced by letting the $\underline{F p}_{\underline{1}}$ take four events of $F p_{1}$, now $\underline{F p}_{\underline{1}}$ would have four additions of events (see figure 1.2). The distance " d " is defined as a constant multiple of the interaction strength. The charges so generated (event exchanging) may be called: "passive mass" since it causes the photon to follow geodesics in spacetime. Passive mass reacts to curved spacetime but do not curve spacetime outside the particle. This is why photons have momentum.

In figure 1.1 $\mathrm{CB}_{\text {St }}$ chose a momentum vector in the up direction, however it cannot go presicely in the up direction since this would require infinite momentum.

38 Let $\mathrm{S}_{\mathrm{AP} 1}, \mathrm{~S}_{\mathrm{AP} 2}$ of $\underline{F p}_{1}$ look like in Figure 1.1, (just turned upside down and with events, negative events interchanged).

39 Let the starting position (after one instance of time) of $F p_{1}$ and $\underline{F p}_{\underline{1}}$ be as drawn in figure

Figure 1.2
The figure shows a Fp_{1} and $\underline{\mathrm{Fp}}_{\underline{1}}$ with the $\underline{\mathrm{F}}_{1}$ taking nodes from Fp_{1}. We postuate that the $\underline{\mathrm{F}}_{\underline{1}}$ is made of negative nodes $(S=(-C) \times(-C))$, so it carries the positive nodes (4 of them) from Fp_{1}. It is easily seen that the two annihilate if becoming superimposed. They are defined to have momentum in opposite directions.

40 Let the two endpionts of C_{1} or $\mathrm{A}, \mathrm{C}_{2}$ or B sense the closest two events of $\mathrm{CB}_{\text {ST }}$ in direction C and let them engage these events even if the whole Fp_{1} needs to turn or move linearly.

41 If four events were engaged: distinguish two new events and go to 40. 35
42 Let Fp_{1} move similarly to 40 , just sensing nearest events of negative coordinates in the down direction.
$43 \quad \mathrm{Fp}_{1}$ and $\underline{\mathrm{p}}_{1}$ may be polarised: cicularly, transversely or longetudinally. 37
43 is true since the point at infinity gives Fp_{1} an orientation in $\mathrm{CB}_{\mathrm{ST}}$.
$45 \quad \mathrm{Fp}_{1}$ has spin 1.
44,
23.4

This is true since Fp_{1} looks the same if turned through 360 degrees and because $\mathrm{CB}_{\text {ST }}$ is helical in any direction.

46 The events of $C B_{\text {ST }}$ causes a force with nonzero component in the up direction. Define F $=$ ma. With $\mathrm{m}=0$ we have infinite acceleration thus infinite speed. But infinite speed would saturate at c . Hence Fp_{1} goes upwards at the speed of light.

47 That the movement of Fp_{1} causes Electro-Magnetic waves can be seen from the following figure. The F forces have a tiny reaction force in the up direction. Figure 1.3
47.1 To get a fuller wave we must have another Fp_{1} cooperating with this one such that " C " points in the up direction.

Figure 1.3
47.2 To get a prependicular magnetic force we need to include events on the other circle as shown in Figure 1.1.

Figure 1.1
47.3 The force F depends on the stiffness of spacetime.

Figure 1.3

Figure 1.3
$48 \quad \mathrm{Fp}_{1}$ gets deflected if $\mathrm{CB}_{S T}$ is curved by gravity. 37
48.1 Let the other circle at C also have 4 events on it removed, so negative events remain. These events must be magnetic in nature.

For this we need 4 types of events of $\mathrm{CB}_{\text {ST }} \mathrm{U}$ \{Magnetic field\}.
$49 \quad \mathrm{Fp}_{1}$ is a photon.
49.1 $\mathrm{Fp}_{\underline{1}}$ is an antiphoton.

Figure 1.3

43 -> 48

43 -> 48

3. Defining a Pi-minus.

Next we define a pi-minus:
50 Construct $S=C<->C$
A2, A1

51 Construct two Riemann Spheres from S, call it RS $<->R S=G_{1}$
50, A2

52 Construct $T=(-C)<->(-C)$
A2, A1

53
Construct two Riemann Spheres from T, call it $\mathrm{RS}_{2}<->\mathrm{RS}_{2}=\mathrm{H}_{1}$
A1, A2

56 Construct a candidate for anti-ud. Call this I_{1}. Let I_{1} be constructed from $\mathrm{G}_{1}<->\mathrm{g}$ <-> H_{1}. 51, 53, 55

57 Let us label the circles in I_{1} as follows (left to right in 56):
$\mathrm{S}_{1,2,3,4} \mathrm{U}_{1,2,3,4} \mathrm{~T}_{1,2,3,4}$ in order Re, Im, Re, ... 56

58 Let the charges be added: Color charge: S_{1} and T_{1}, Electric charge: S_{2} and T_{2}, Mass: S_{4} and T_{4} in balance with the left half, like in the following Figure: 57

Figure 1.4: I_{1}.
They are drawn like this but really the circles are all superimposed on each other so that one would see only two circles in three dimensions. The little stripes below the little circles and filled circles indicate they are active. Active events can influence events of spacetime external to the particle, passive eventss can only do that inside the particle. I_{1} must have 0 Weak Hypercharge.

59 Let the charges be ballanced by the antiparticle constructed as follows: right I_{1} is constructed from copies of $\mathrm{S}, \mathrm{T}, \mathrm{U}$.

51, 53, 55
60 Small circles are defined to be attracted to filled circles of the same charge type.

61 A pi-minus has: electric charge $=-1$, mass $=139.570 \mathrm{MeV}$, decays into: electron and electron-antineutrino, interacts via: Strong, Weak, Electromagnetic, Gravity, has spin $=0$ and parity $=-1$ Pi-minus properties see: [1]

62 Define an I_{1} to decay to the particles in figure 1.5 and 1.6.Call the particle in figure 1.5 an I_{12} and the one in figure 1.6 an I_{13}. We have that the strong force charge goes inactive in both particles, but they are still needed passively for keeping the particles together.
I_{1} decay definition.

Figure 1.5: I_{12}.
We have this decay to a left handed (I_{12}) and right handed ($\left(\mathrm{I}_{13}\right)$ particle.
62.1 Define the particle's mas charge sphere to rotate twice for every revolution of the spin of I_{12}. not bound together

Figure 1.6: I_{13}.
Mass charge devides in half. Space must give the I_{13} particle Right Handedness.
62.2 Define the sphere with mass charge to spin twice around for every total rotation of the particle. not bound together
$63 \quad I_{1}$ has charge - 1 .
58
$64 \quad I_{1}$ has mass determinable with the Higgs field. Define the mass charge
by its ditance to sensed nodes and use the Higgs mechanism. 58

65
I_{1} decays to an electron and electron antineutrino.
$66 \quad \mathrm{I}_{1}$ has Strong, Electromagnetic, Weak and Gravitational interactions
67 Spin 0 of I_{1} can be accomodated by defining the mass-charge to fill the entire Riemann sphere.
$68 \quad I_{1}$ has parity $=-1$ since invering the axii puts infinity at the bottom.
We must prove I_{12} is an electron before symmetry breaking:
Decay from I_{1} to I_{12} can happen in two ways: rotate the I around the bottom point to produce
left handed I_{12}, or rotate around the topmost point (at infinity) to produce right handed I_{12}.
$70 \quad \mathrm{I}_{12}$ has weak, electromagnetic and gravitational interactions.
$71 \quad \mathrm{l}_{12}$ has electric charge $=-1$. 62
$72 \quad \mathrm{I}_{12}$ is stable.

This is since there is a gluon holding the particle together.
$73 \quad \mathrm{I}_{12}$ has Weak Hypercharge $=-1$
$74 \quad \mathrm{I}_{12}$ has spin $1 / 2$
$75 \quad \mathrm{I}_{12}$ is a left handed electron $70->74$

We must prove l_{13} is an electron antineutrino:
$76 \quad \mathrm{I}_{13}$ has spin- 1/2
$77 \quad \mathrm{l}_{13}$ has charge $=0$
$78 \quad \mathrm{I}_{13}$ has hypercharge $=-1$
$79 \quad \mathrm{l}_{13}$ is a right handed electron antineutrino 76 -> 78
$80 \quad \mathrm{I}_{1}=$ left handed pi-minus (before symmetry breaking). 61,62 -> 68.1, 75, 79
$81 \quad \mathrm{I}_{1}$ has Weak Hypercharge $=0,\left(\mathrm{Y}=2\left(\mathrm{Q}-\mathrm{T}_{3}\right)\right)=2(-1-(-1))=0$
Figure 1.4

4. Define protons.

Protons can be defined from the above data for pi-minus using the charges for up and down quarks. Note that it is most natural to define the three quarks as superimposed on each other.

It is now easy to define Hydrogen.
... Define W and Z bosons
... Define Gravitrons

Comments:

In trying to costruct photons by inserting a half circle on Pp one is led (because the half circle must come from a copy of space) to also contruct antiphotons and they are not made of antidimensions.

After line 34 we have constructed a photon and an anti-photon and basic spacetime and time.

We may postulate that EM comes from 3 dimensions of space x the 5 'th dimension.
We have that the theory of defining photons my be tested by proving: there is a direction in which photons with the same orientation will not go.

We finally state that time defined by: "It is what a clock measure." has problems since a clock can be turned back or not tightly wound up i.e. clocks don't dictate time.

Bibliography:

[1] Kotz and Purcell. Chemistry and Chemical Reactivity. Saunders College Publishing, 1987
[2] www.sciforums.com. Username: NotEinstein.
[3] Nagashima Y, Elementary Particle Physics. Volume 1: Quantum Field Theory and Particles. Wiley-VCH Verlag GmbH \& Co. KGaA. 2010.
[4] Hdjensofjfnen, Wikipedia, Internet: https://en.m.wikipedia.org/wiki/Pion. 2019.
[5] https://www.youtube.com/watch?v=Wmr4laNUeGc. Video name: Einstein's Relativity os WRONG Part 0.

