
transitions by the Stark effect is difficult, the estimated b
component of about 0.7 D seems reasonable. The line inten-
sities for the tunneling-rotation transitions are by about one
order of magnitude weaker than those of the pure rotational
transitions, consistent with the calculated dipole moment ra-
tio (mb /ma) of about 0.22.

C. Dynamics of proton tunneling
We consider the tunneling-rotation motion of tropolone

using a one-dimensional model. The main aim of this discus-
sion is to clarify what the spectroscopic constants obtained in
the present study mean as well as to confirm that the
tunneling-rotation interaction constant F is within an accept-
able range of magnitude. For this purpose, use of a multidi-
mensional model would only lead to unnecessary complica-
tion, although such models have frequently been employed
for interpreting the vibrational dependence of the tunneling
splitting.13–15 The present treatment partially parallels the
one-dimensional analysis of proton tunneling dynamics in
malonaldehyde by Baughcum et al.25

The one-dimensional model is characterized by giving
the coordinates @ai(x),bi(x),ci(x)# of each atom referred to
the molecule-fixed Cartesian axes as functions of the tunnel-
ing coordinate x, which describes the degree of the molecular
deformation during the tunneling motion. We assume that
the potential function U(x) has two equivalent minima at x
56xmin , and x50 corresponds to the top of the barrier. As
usual, the origin of the axis system is chosen at the center of
mass of the molecule. The c axis is perpendicular to the
molecular plane, and ci(x)50 for all atoms. The orientation
of the a and b axes can be chosen so that the angular mo-
mentum caused by the tunneling motion vanishes when
viewed from the molecule-fixed axis system, i.e.,

(
i
mi@ai~dbi /dx !2bi~dai /dx !#50. ~8!

Note that the a and b axes do not coincide with the instan-
taneous principal axes.

The classical kinetic energy for the tunneling-rotation
motion is then written as

T5~1/2!Iaa~x !va
21~1/2!Ibb~x !vb

21~1/2!Icc~x !vc
2

1Iab~x !vavb1~1/2!G~x !~dx/dt !2, ~9!

where Iab(x) is an element of the inertial tensor, va an
angular velocity component, and G(x) is the reduced mass
defined by

G~x !5(
i
mi@~da/dx !21~db/dx !2# . ~10!

The reduced mass, in general, depends on the tunneling
coordinate x. However, an appropriate definition of x reduces
G(x) to a constant G0 . Then the quantum mechanical
Hamiltonian is derived by a standard method as

H5A~x !Ja
21B~x !Jb

21C~x !Jc
21F~x !~JaJb1JbJa!

2Kd2/dx21U~x !, ~11!

where K is a constant inversely proportional to the reduced
mass G0 . The coefficients A(x), B(x), C(x), and F(x) are
the rotational constants and the tunneling-rotation interaction
constant in frequency units as functions of the tunneling co-
ordinate x,

A~x !5~h/8p2!Ibb~x !/@Iaa~x !Ibb~x !2Iab~x !2# , ~12a!

B~x !5~h/8p2!Iaa~x !/@Iaa~x !Ibb~x !2Iab~x !2# , ~12b!

C~x !5~h/8p2!@1/Icc~x !# , ~12c!

F~x !52~h/8p2!Iab~x !/@Iaa~x !Ibb~x !2Iab~x !2# .
~12d!

When the Schrödinger equation for the tunneling mo-
tion,

@2Kd2/dx21U~x !#un&5enun&, ~13!

is solved, the first and second lowest eigenstates correspond
to the 01 and 02 components, respectively, of the tunneling
doublet. The rotational constants observed for the 01 and 02

states correspond to the averages of A(x), etc., over the re-
spective eigenfunctions,

A65^06uA~x !u06& etc., ~14!

whereas the tunneling-rotation interaction constant is given
by

F5^01uF~x !u02& . ~15!

Note that A(x), etc., are even functions of x but F(x) is an
odd function, and that the eigenfunctions u01& and u02& are
even and odd with respect to x. If the double minimum po-
tential has a high barrier as in the present case, the eigen-
functions u06& have their amplitudes concentrated in the vi-
cinity of the potential minima. Therefore, A6 , etc., would be
close to A(xmin), the value at the potential minimum, and F
to F(xmin).

Now we present the results of some sample calculations
with assumption of a simple linear trajectory model, in
which each atom traverses a straight path,

ai~x !5~1/2!@ai
R1ai

L#1~1/2!@ai
R2ai

L#~x/xmin!, ~16a!

bi~x !5~1/2!@bi
R1bi

L#1~1/2!@bi
R2bi

L#~x/xmin!, ~16b!

connecting (ai
R ,bi

R) and (ai
L ,bi

L), which denote the positions
of the atom corresponding to the two potential minima. The
molecule takes the right-hand side ~R! conformation when
x5xmin , and the left-hand side ~L! one when x52xmin .
With an assumption of the molecular shape at a minimum,
these coordinates are uniquely determined in accordance
with the condition of vanishing angular momentum @Eq. ~8!.#

If the ab initio optimized structure by Takada and
Nakamura14 @Table IX ~A!# is arbitrarily assumed as the
equilibrium conformation, we obtain F(xmin)526.0 MHz.
This conformation corresponds to A(xmin)52751.4, B(xmin)
51652.2, and C(xmin)51032.3 MHz, in good agreement
with the experimentally obtained rotational constants. How-
ever, another calculation done on the equilibrium conforma-
tion only slightly distorted from the above structure gave
F(xmin)522.8 MHz. These two structures differ by less than
0.01 Å and 0.8° in bond lengths and angles, respectively. It is
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