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transitions by the Stark effect is difficult, the estimated b
component of about 0.7 D seems reasonable. The line inten-
sities for the tunneling-rotation transitions are by about one
order of magnitude weaker than those of the pure rotational
transitions, consistent with the calculated dipole moment ra-
tio (up/pm,) of about 0.22.

C. Dynamics of proton tunneling

We consider the tunneling-rotation motion of tropolone
using a one-dimensional model. The main aim of this discus-
sion is to clarify what the spectroscopic constants obtained in
the present study mean as well as to confirm that the
tunneling-rotation interaction constant F is within an accept-
able range of magnitude. For this purpose, use of a multidi-
mensional model would only lead to unnecessary complica-
tion, although such models have frequently been employed
for interpreting the vibrational dependence of the tunneling
splitting.’*~'> The present treatment partially parallels the
one-dimensional analysis of proton tunneling dynamics in
malonaldehyde by Baughcum er al.?

The one-dimensional model is characterized by giving
the coordinates [a;(x),b;(x),c;(x)] of each atom referred to
the molecule-fixed Cartesian axes as functions of the tunnel-
ing coordinate x, which describes the degree of the molecular
deformation during the tunneling motion. We assume that
the potential function U(x) has two equivalent minima at x
= Xin, and x=0 corresponds to the top of the barrier. As
usual, the origin of the axis system is chosen at the center of
mass of the molecule. The ¢ axis is perpendicular to the
molecular plane, and c;(x)=0 for all atoms. The orientation
of the a and b axes can be chosen so that the angular mo-
mentum caused by the tunneling motion vanishes when
viewed from the molecule-fixed axis system, i.e.,

> mila;(db;/dx)—b(da;/dx)]=0. @®)

l

Note that the a and b axes do not coincide with the instan-
taneous principal axes.

The classical kinetic energy for the tunneling-rotation
motion is then written as

T=(1/2)1 ,o(x) 02+ (1/2) 1, (x) 0} + (1/2) 1, (x) >
+1,,(x)w,0,+ (1/2)G(x)(dx/dt)?, 9)

where I,p(x) is an element of the inertial tensor, w, an
angular velocity component, and G(x) is the reduced mass
defined by

G(x)=2, m[(daldx)*+(db/dx)?]. (10)

The reduced mass, in general, depends on the tunneling
coordinate x. However, an appropriate definition of x reduces
G(x) to a constant G,. Then the quantum mechanical
Hamiltonian is derived by a standard method as

H=A(X)J24B(x)J5+ C(x)J>+F(x)(J Jp+J ] )
—Kd*/dx*+U(x), (1)
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where K is a constant inversely proportional to the reduced
mass G . The coefficients A(x), B(x), C(x), and F(x) are
the rotational constants and the tunneling-rotation interaction
constant in frequency units as functions of the tunneling co-
ordinate x,

A(x) = (h187) Ly (X) /[ g (X) 1 (x) = 1ip(x)?],  (122)
B(x)= (h/8)1(x)/[110(x) I (x) = 1,p(x)*],  (12b)
C(x)=(h/87*)[1/,.(x)], (12¢)
F(x)= = (R8T yp(x)/[1 1o (X) 1 (x) = 11y (x)*].

(12d)

When the Schrodinger equation for the tunneling mo-
tion,

[—Kd*/dx*+ U(x)]|n)=¢€,|n), (13)

is solved, the first and second lowest eigenstates correspond
to the 0% and 0~ components, respectively, of the tunneling
doublet. The rotational constants observed for the 0" and 0~
states correspond to the averages of A(x), etc., over the re-
spective eigenfunctions,

A.=(0"|A(x)[0") etc., (14)

whereas the tunneling-rotation interaction constant is given
by

F=(0"|F(x)|07). (15)

Note that A(x), etc., are even functions of x but F(x) is an
odd function, and that the eigenfunctions |0™) and |0 ™) are
even and odd with respect to x. If the double minimum po-
tential has a high barrier as in the present case, the eigen-
functions |0 ™) have their amplitudes concentrated in the vi-
cinity of the potential minima. Therefore, A . , etc., would be
close to A(x,,), the value at the potential minimum, and F
to F (xmin)-

Now we present the results of some sample calculations
with assumption of a simple linear trajectory model, in
which each atom traverses a straight path,

ai(x)=(1/2)[af+af ]+ (1/2)[af —af1(x/X ). (162)

bi(x)=(1U2)[bF+b}]+(12)[bf = bi(x/x ), (16)

connecting (af ,b®) and (a},bY), which denote the positions
of the atom corresponding to the two potential minima. The
molecule takes the right-hand side (R) conformation when
X=Xpn, and the left-hand side (L) one when x=—x,.
With an assumption of the molecular shape at a minimum,
these coordinates are uniquely determined in accordance
with the condition of vanishing angular momentum [Eq. (8).]

If the ab initio optimized structure by Takada and
Nakamura'* [Table IX (A)] is arbitrarily assumed as the
equilibrium conformation, we obtain F(x;,)=—6.0 MHz.
This conformation corresponds to A (X ;) =2751.4, B(Xmin)
=1652.2, and C(x,;,)=1032.3 MHz, in good agreement
with the experimentally obtained rotational constants. How-
ever, another calculation done on the equilibrium conforma-
tion only slightly distorted from the above structure gave
F(xpin)=22.8 MHz. These two structures differ by less than
0.01 A and 0.8° in bond lengths and angles, respectively. It is



