37 Radiant Forces

An active emitter shines light and heat into local space. Radiant forces combine to produce radiant brightness. A force may be associated with the emitter, and another force may be associated with the radiation.

Each force may be represented as a vector. Each vector is four dimensional. If three "radiant conditions" apply, then the components of force will give the Stephan-Boltzmann equation of brightness.

The Radiant Vectors;

One vector of force (F_1) may be associated with an emitter, and another vector of force (F_2) may be associated with radiation. The force vectors are;

$$F_1 = F_{11}e_{11} + F_{12}e_{12} + F_{13}e_{13} + F_{14}e_{14}$$

$$F_2 = F_{21}e_{21} + F_{22}e_{22} + F_{23}e_{23} + F_{24}e_{24}$$

Where; $(e_{11}$, e_{12} , e_{13} , e_{14}) $(e_{21}$, e_{22} , e_{23} , e_{24}) are unit vectors

 $(F_{11}, F_{12}, F_{13}, F_{14})$ $(F_{21}, F_{22}, F_{23}, F_{24})$ are scalar components of force

Each vector has a magnitude; $|F_n| = F_{n5}$ where; n = 1,2

The components are related to magnitude; $F_{n1}^2 + F_{n2}^2 + F_{n3}^2 + F_{n4}^2 = F_{n5}^2$

Sub-components (F_{n6} , F_{n7}) are also related; $F_{n6}^2 = F_{n5}^2 - F_{n4}^2 = F_{n3}^2 + F_{n7}^2$

 $F_{n7}^2 = F_{n1}^2 + F_{n2}^2 = F_{n6}^2 - F_{n3}^2$

Component Geometry;

Each vector (\mathbf{F}_n) has components and sub-components arranged as angular geometry;

 $F_{n1} = F_{n7}Cos(A_{n1})$ and; $F_{n2} = F_{n7}Sin(A_{n1})$

 $F_{n7} = F_{n6}Cos(A_{n2})$ and; $F_{n3} = F_{n6}Sin(A_{n2})$

 $F_{n6} = F_{n5}Cos(A_{n3})$ and; $F_{n4} = F_{n5}Sin(A_{n3})$

Radiant Conditions:

Three conditions are required for emission; Condition 1; $A_{11} = A_{12}$

Condition 2; $F_{11} = F_{26}$

Condition 3; $A_{13} = A_{23}$

Radiant Forces

The Force Equation;

From condition 1;
$$A_{11} = A_{12}$$

$$Cos(A_{11}) = Cos(A_{12})$$

$$F_{11}/F_{17} = F_{17}/F_{16}$$

$$F_{11}F_{16} = F_{17}^2$$

From condition 2;
$$F_{26}F_{16} = F_{17}^{2}$$

$$F_{25}Cos(A_{23})F_{15}Cos(A_{13}) = F_{17}^{2}$$

From condition 3;
$$F_{25}Cos(A_{13})F_{15}Cos(A_{13}) = F_{17}^{2}$$

The force equation is;
$$F_{25}F_{15}Cos^2(A_{13}) = F_{17}^2$$

Assume;
$$Sin(A_{13}) = \frac{1}{4}$$
 and; $Cos(A_{13}) = \frac{1}{4}(15)^{\frac{1}{4}}$

The scalar force equation may be written as;

$$15F_{25}F_{15} = 16F_{17}^{2}$$

Definitions of Force;

The scalar force equation relates the radiant force (F_{25}) to the dynamic force of the emitter (F_{15}) and the thermal force of the emitter (F_{17}). Components of force may be defined as;

$$F_{15} = E_{15}/(2\pi r_{15})$$
 and; $F_{17} = E_{17}^{2}/hc$

Where; E_{15} is the dynamic energy of the emitter; $E_{15} = \frac{1}{2} \hbar f_{15}$

 f_{15} is the frequency of the emitter

ђ is the reduced Plank constant

 r_{15} is the radius of the emitter; $r_{15} = v_{15}t$

 v_{15} is the average vibrational velocity of the emitter and t is time

 E_{17} is thermal energy; $E_{17} = \frac{1}{2}\pi k_B T_{17}$

k_B is the Boltzmann constant

T₁₇ is temperature

h is the Plank constant

c is the light constant

Radiant Forces

The Radiance Equation;

The scalar force equation is; $15F_{25}F_{15} = 16F_{17}^2$

 $15F_{25}(1)F_{15} = 16F_{17}^{2}$

Definitions give; $15F_{25}(v_{15}t/r_{15})F_{15} = 16F_{17}^{2}$

 $15F_{25}(v_{15}t/r_{15})(E_{15}/2\pi r_{15}) = 16E_{17}^{4}/h^{2}c^{2}$

 $15F_{25}(v_{15}t/r_{15})(\%\hbar f_{15}/2\pi r_{15}) = 16(\%\pi k_B T_{17})^4/h^2c^2$

 $15F_{25}(v_{15}t/r_{15})(h_{15}/4\pi r_{15}) = \pi^4 k_B^4 T_{17}^4/h^2 c^2$

 $15(F_{25}v_{15})\hbar(tf_{15})(1/4\pi r_{15}^{2}) = \pi^{4}k_{B}^{4}T_{17}^{4}/h^{2}c^{2}$

 $15(F_{25}V_{15})(h/2\pi)(1)(1/4\pi r_{15}^{2}) = \pi^{4}k_{B}^{4}T_{17}^{4}/h^{2}c^{2}$

 $15(F_{25}V_{15})(1/4\pi r_{15}^{2}) = 2\pi^{5}k_{B}^{4}T_{17}^{4}/h^{3}c^{2}$

Emissive power (P) is; $P = F_{25}v_{15}$

Emissive surface area (A₁₅) is; $A_{15} = 4\pi r_{15}^2$

Giving; $15P/A_{15} = (2\pi^5 k_B^4/h^3 c^2)T_{17}^4$

Brightness (β) is; $\beta = P/A_{15}$

Giving the radiance equation; $\beta = (2\pi^5 k_B^4/15h^3c^2)T_{17}^4 = \sigma T_{17}^4$

Where; σ is the Stefan-Boltzmann constant; $\sigma = 2\pi^5 k_B^4/15c^2h^3$

Conclusion;

Two vectors represent forces associated with an emitter and radiation. If three "radiant conditions" apply, then the components of force will give the Stephan-Boltzmann equation of brightness.

August 23, 2020 Page 3