38 Hawking Force

A stationary, massive object is assumed to impose a "force" upon surrounding space. The force may be called the "Hawking force" as it is associated with Hawking temperature. This force may be represented as a vector.

If one condition applies, and if the components are suitably defined, then the components will give the definition of Hawking temperature and length contraction.

The Force Vector;

A vector of force (F_H) may be associated with a massive object; $F_H = F_1 e_1 + F_2 e_2 + F_3 e_3$

Where; e_1 , e_2 , e_3 are direction vectors (unit vectors)

 F_1 , F_2 , F_3 are scalar components of force

The vector has a magnitude; $|F_H| = F_4$

The components are related to magnitude; $F_{n1}^2 + F_{n2}^2 + F_{n3}^2 = F_{n4}^2$

A sub-component (F_{n5}) is also related; $F_5^2 = F_1^2 + F_2^2 = F_4^2 - F_3^2$

Component Geometry;

Components and the sub-component have angular geometry;

$$F_1 = F_5Cos(A_1)$$
 and; $F_2 = F_5Sin(A_1)$

$$F_5 = F_4 Cos(A_2)$$
 and; $F_3 = F_4 Sin(A_2)$

The Radiant Condition:

A condition is required for emission; $A_1 = A_2$

The Force Equation;

From the condition; $A_1 = A_2$

 $Sin(A_1) = Sin(A_2)$

$$F_2/F_5 = F_3/F_4$$

The scalar force equation may be written as;

$$\mathsf{F}_2\mathsf{F}_4=\mathsf{F}_3\mathsf{F}_5$$

Definitions of Force;

Components of force may be defined as;

$$F_1 = mv_1c/r_s$$

$$F_2 = mc^2/r$$

$$F_3 = \frac{1}{2}hc/n^2\lambda^2$$

$$F_4 = k_B T_4 / r$$

$$F_5 = mc^2/r_S$$

Where; n is a quantum number (integer)

h is the Plank constant

c is the light constant

k_B is the Boltzmann constant

 $\boldsymbol{\lambda}$ is wavelength of radiation

m is the mass of the object

r is radial distance from the center of the object

 r_s is the Schwarzschild radius; $r_s = 2Gm/c^2$

G is the gravitational constant

T₄ is Hawking temperature

v₁ is average vibrational velocity

The Radiance Equation;

The scalar force equation is; $F_2F_4 = F_3F_5$

Definitions give; $(mc^2/r)(k_BT_4/r) = (\frac{1}{2}hc/n^2\lambda^2)(mc^2/r_S)$

$$k_B T_4 = (hc/2n^2 \lambda^2)(r^2/r_S)$$

The quantization rule states that only an integer number of waves may be imposed upon a circumference; $n\lambda$ = $2\pi r$

giving; $k_B T_4 = (hc/8\pi^2 r^2)(r^2/r_S)$

 $T_4 = hc/8\pi^2 k_B r_S$

August 25, 2020 Page 2

Hawking Force

Reduced Plank constant (\hbar); $T_4 = \hbar c/4\pi k_B r_S$

The Schwarzschild radius is; $r_s = 2Gm/c^2$

Giving Hawking temperature; $T_4 = \hbar c^3 / 8\pi k_B Gm$

Length contraction;

From vector geometry; $Cos(A_1) = F_1/F_5 = (mv_1c/r_s)/(mc^2/r_s) = v_1/c$

$$Sin(A_1) = F_2/F_5 = (mc^2/r)/(mc^2/r_S) = r/r_S$$

Geometry gives; $Cos^2(A_1) + Sin^2(A_1) = 1$

$$r/r_S = (1 - v_1^2/c^2)^{\frac{1}{2}}$$

$$r_S = \gamma r$$

Where; γ is the Lorentz factor

Conclusion;

A stationary, massive object is assumed to impose a "force" upon surrounding space. The force may be called the "Hawking force" as the magnitude is associated with Hawking temperature.

August 25, 2020 Page 3