40 Schwarzschild Frequency

The Schwarzschild metric may be modified to represent frequency.

The Schwarzschild Metric;

The Schwarzschild metric may be written as:

$$\partial s^2 = -(R/r)c^2\partial t^2 + (r/R)\partial r^2 + r^2\partial \theta^2 + r^2\sin^2(\theta)\partial \phi^2$$

Where: the set $(-t, r, \theta, \phi)$ represents the polar co-ordinates of space-time

s is the space-time interval

R is a difference of radial distance; $R = r - r_S$

 r_s is the Schwarzschild radius; $r_s = 2Gm/c^2$

c is the light constant

G is the gravitational constant

m is mass

Spatial Structure;

The angles (θ, ϕ) are: $\theta = U_{\theta}/r$ and: $\phi = U_{\phi}/w$

Where: U_{θ} , U_{ϕ} are the arc lengths

w is a radial distance; $w^2 = x^2 + y^2$

r is a radial distance; $r^2 = x^2 + y^2 + z^2$

the set (x, y, z) represents the Cartesian co-ordinates of space

Spatial structure may be represented as:

 $x = wCos(\phi)$ and: $y = wSin(\phi)$

 $z = rCos(\theta)$ and: $w = rSin(\theta)$

 $U_{\theta} = r\theta$ and: $U_{\Phi} = w\Phi$

 $\partial U_{\theta} = r\partial \theta$ and: $\partial U_{\phi} = w\partial \phi = rSin(\theta)\partial \phi$

The Schwarzschild metric may be written as: $\partial s^2 = -(R/r)c^2\partial t^2 + (r/R)\partial r^2 + \partial U_{\theta}^2 + \partial U_{\phi}^2$

Schwarzschild Frequency

Reciprocal Wavelength;

Assume the interval (s) reciprocates to the complex interval wavelength ($i\lambda_s$), giving:

$$s + i\lambda_S = 0$$

$$\partial s + i\partial \lambda_S = 0$$

$$\partial s^2 + \partial \lambda_s^2 = 0$$

The Schwarzschild metric may be written as:

$$-\partial \lambda_S^2 = -(R/r)c^2\partial t^2 + (r/R)\partial r^2 + \partial U_{\theta}^2 + \partial U_{\phi}^2$$

$$(R/r)c^2\partial t^2 = (r/R)\partial r^2 + \partial U_{\theta}^2 + \partial U_{\phi}^2 + \partial \lambda_s^2$$

The Modified Metric;

The geometric average of radial distance (R_G) is: $R_G = (rR)^{\frac{1}{2}}$

Division of the metric by the squared average gives:

$$c^2 \partial t^2 / r^2 = \partial r^2 / R^2 + \partial U_{\theta}^2 / rR + \partial U_{\phi}^2 / rR + \partial \lambda_s^2 / rR$$

$$c^{2}\partial t^{2}/r^{2} = \partial r^{2}/R^{2} + \partial U_{\theta}^{2}/R_{G}^{2} + \partial U_{\phi}^{2}/R_{G}^{2} + \partial \lambda_{s}^{2}/R_{G}^{2}$$

The modified Schwarzschild metric is:

$$c^2/r^2 = (\partial r^2/\partial t^2)/R^2 + (\partial U_{\theta}^2/\partial t^2)/R_{G}^2 + (\partial U_{\phi}^2/\partial t^2)/R_{G}^2 + (\partial \lambda_s^2/\partial t^2)/R_{G}^2$$

Frequency;

The modified Schwarzschild metric includes squared velocities (v_n^2) :

$$c^2/r^2 = v_r^2/R^2 + v_{\theta}^2/R_{G}^2 + v_{\phi}^2/R_{G}^2 + v_{s}^2/R_{G}^2$$

Frequency (f_n) is: $f_n = v_n/R_n$

Giving the frequency equation; $f_t^2 = f_r^2 + f_{\theta}^2 + f_{\phi}^2 + f_{S}^2$

Where; $c/r = 1/t = f_t$

October 14, 2020

Schwarzschild Frequency

The Interval Frequency;

The magnitude of spatial frequency (f_R) is related to components of spatial frequency:

$$f_{\rm R}^2 = f_{\rm r}^2 + f_{\theta}^2 + f_{\phi}^2$$

The interval frequency (f_s) is related to temporal frequency (f_t) and spatial frequency (f_R) :

$$f_{\rm S}^2 = f_{\rm t}^2 - f_{\rm R}^2$$

Interference;

A ratio of constructive interference (C) is: $C = (f_t + f_R)/f_S$

A ratio of destructive interference (D) is: $D = (f_t - f_R)/f_S$

The product of opposite ratios is unity: CD = 1

Giving the frequencies of space-time; $f_S^2 = f_t^2 - f_R^2$

The Tensor Equation;

The modified Schwarzschild metric includes squared velocities (v_n^2) :

$$c^2/r^2 = v_r^2/R^2 + v_{\theta}^2/R_{G}^2 + v_{\phi}^2/R_{G}^2 + v_{s}^2/R_{G}^2$$

$$(R^2/r^2)c^2 = v_r^2 + (R^2/R_G^2)(v_\theta^2 + v_\phi^2 + v_S^2)$$

Assume; $v_1/c = R/r$

 $v_r/v_2 = a/b$

 $v_{\theta}^2 + v_{\phi}^2 + v_{S}^2 = \frac{1}{2}v_3^2$

Giving; $v_1^2 = (a/b)^2 v_2^2 + \frac{1}{2} (R^2/R_G^2) v_3^2$

Upgrade scalar velocities to vectors: $\mathbf{v_1}^2 = (a/b)^2 \mathbf{v_2}^2 + \frac{1}{2} (R^2/R_G^2) \mathbf{v_3}^2$

A basic Tensor $(\underline{T_n})$ is: $\underline{T_n} = v_n^2$

Giving a basic tensor field equation; $\underline{T}_1 = (a/b)^2 \underline{T}_2 + \frac{1}{2} (R^2/R_G^2) \underline{T}_3$

Conclusion;

The Schwarzschild metric may be modified to represent frequency.

October 14, 2020 Page 3