The Schwarzschild metric may be modified to represent a scalar frequency field. The field is associated with a primary object. If a second object interacts with the field the result is a force field. The force field equation may be reduced to the Schrodinger energy equation. Frequency provides a link between the Schwarzschild metric and the Schrodinger energy equation.

The Schwarzschild Metric:

The Schwarzschild metric may be written as:

$$\partial s^2 = -(R/r)c^2\partial t^2 + (r/R)\partial r^2 + r^2\partial \theta^2 + r^2\sin^2(\theta)\partial \phi^2$$

Where: the set $(-t, r, \theta, \phi)$ represents the polar co-ordinates of space-time

s is the space-time interval

R is a difference of radial distance; $R = r - r_S$

 r_s is the Schwarzschild radius; $r_s = 2Gm/c^2$

c is the light constant

G is the gravitational constant

m is mass

Spatial Structure;

The angles (θ, ϕ) are: $\theta = U_{\theta}/r$ and: $\phi = U_{\phi}/w$

Where: U_{θ} , U_{ϕ} are the arc lengths

w is a radial distance; $w^2 = x^2 + y^2$

r is a radial distance; $r^2 = x^2 + y^2 + z^2$

the set (x, y, z) represents the Cartesian co-ordinates of space

Spatial structure may be represented as:

 $x = wCos(\phi)$ and: $y = wSin(\phi)$

 $z = rCos(\theta)$ and: $w = rSin(\theta)$

 $U_{\theta} = r\theta$ and: $U_{\varphi} = w\varphi$

 $\partial U_{\theta} = r \partial \theta$ and: $\partial U_{\phi} = w \partial \phi = r \sin(\theta) \partial \phi$

The Schwarzschild metric may be written as: $\partial s^2 = -(R/r)c^2\partial t^2 + (r/R)\partial r^2 + \partial U_{\theta}^2 + \partial U_{\phi}^2$

Reciprocal Wavelength;

Assume the interval (s) reciprocates to the complex interval wavelength ($i\lambda_s$), giving:

$$s + i\lambda_S = 0$$

$$\partial s + i\partial \lambda_S = 0$$

$$\partial s^2 + \partial \lambda_s^2 = 0$$

The Schwarzschild metric may be written as:

$$-\partial \lambda_S^2 = -(R/r)c^2 \partial t^2 + (r/R) \partial r^2 + \partial U_{\theta}^2 + \partial U_{\phi}^2$$

$$(R/r)c^2\partial t^2 = (r/R)\partial r^2 + \partial U_{\theta}^2 + \partial U_{\phi}^2 + \partial \lambda_S^2$$

The Modified Metric;

The geometric average of radial distance (R_G) is: $R_G = (rR)^{\frac{1}{2}}$

Division of the metric by the squared average gives:

$$c^2 \partial t^2 / r^2 = \partial r^2 / R^2 + \partial U_{\theta}^2 / rR + \partial U_{\phi}^2 / rR + \partial \lambda_s^2 / rR$$

$$c^{2}\partial t^{2}/r^{2} = \partial r^{2}/R^{2} + \partial U_{\theta}^{2}/R_{G}^{2} + \partial U_{\phi}^{2}/R_{G}^{2} + \partial \lambda_{s}^{2}/R_{G}^{2}$$

The modified Schwarzschild metric is:

$$c^2/r^2 = (\partial r^2/\partial t^2)/R^2 + (\partial U_{\theta}^2/\partial t^2)/R_{G}^2 + (\partial U_{\phi}^2/\partial t^2)/R_{G}^2 + (\partial \lambda_{S}^2/\partial t^2)/R_{G}^2$$

also:
$$c^2/r^2 = (\partial r^2/\partial t^2)/R^2 + (\partial U_{\theta}^2/\partial t^2)/R_{G}^2 + (\partial U_{\phi}^2/\partial t^2)/R_{G}^2 - (\partial s^2/\partial t^2)/R_{G}^2$$

Frequency;

The modified Schwarzschild metric includes squared velocities (v_n^2) :

$$c^2/r^2 = v_r^2/R^2 + v_{\theta}^2/R_{\theta}^2 + v_{\phi}^2/R_{\theta}^2 + v_{\lambda}^2/R_{\theta}^2$$

and:
$$c^2/r^2 = v_r^2/R^2 + v_{\theta}^2/R_{\theta}^2 + v_{\phi}^2/R_{\theta}^2 - v_s^2/R_{\theta}^2$$

Frequency (f_n) is: $f_n = v_n/R_n$

$$c/r = 1/t = f_t$$

Giving the frequency equations; $f_t^2 = f_r^2 + f_{\theta}^2 + f_{\phi}^2 + f_{\lambda}^2$

$$f_{\rm t}^2 = f_{\rm r}^2 + f_{\theta}^2 + f_{\phi}^2 - f_{\rm S}^2$$

October 16, 2020

The magnitude of spatial frequency (f_R) is related to components of spatial frequency: $f_R^2 = f_r^2 + f_{\theta}^2 + f_{\phi}^2$

The frequencies of space-time are: $f_t^2 = f_R^2 + f_{\lambda}^2$

 $f_{\rm t}^2 = f_{\rm R}^2 - f_{\rm S}^2$

Where: f_t is temporal frequency; $f_t = c/r = 1/t$

 $f_{\rm R}$ is spatial frequency; $f_{\rm R}^2 = f_{\rm r}^2 + f_{\theta}^2 + f_{\phi}^2$

 f_{λ} is frequency associated with wavelength in space-time ("wave" space-time)

f_s is frequency associated with displacement in space-time ("particle" space-time)

Wave Interference;

A ratio of constructive wave interference (C) is: $C = (f_t + f_R)/f_\lambda$

A ratio of destructive wave interference (D) is: $D = (f_t - f_R)/f_\lambda$

The product of opposite ratios is unity: CD = 1

Giving the wave frequencies of space-time; $f_{\lambda}^2 = f_t^2 - f_R^2$

The Tensor Equation;

The modified Schwarzschild metric includes squared velocities (v_n^2) :

$$c^2/r^2 = v_r^2/R^2 + v_\theta^2/R_G^2 + v_\phi^2/R_G^2 + v_\lambda^2/R_G^2$$

$$(R^2/r^2)c^2 = v_r^2 + (R^2/R_G^2)(v_\theta^2 + v_\phi^2 + v_\lambda^2)$$

Assume; $v_1/c = R/r$

 $v_r/v_2 = a/b$

 $v_{\theta}^2 + v_{\varphi}^2 + v_{\lambda}^2 = \frac{1}{2}v_3^2$

Giving; $v_1^2 = (a/b)^2 v_2^2 + \frac{1}{2} (R^2/R_G^2) v_3^2$

Upgrade scalar velocities to vectors: $\mathbf{v_1}^2 = (a/b)^2 \mathbf{v_2}^2 + \frac{1}{2} (R^2/R_G^2) \mathbf{v_3}^2$

A basic Tensor (\underline{T}_n) is: $\underline{T}_n = \mathbf{v}_n^2$

Giving a basic tensor field equation; $\underline{T_1} = (a/b)^2 \underline{T_2} + \frac{1}{2} (R^2/R_G^2) T_3$

Particle Interference;

Constructive particle frequency interference (C) is: $C = (f_{SR} + if_{SO})$ where; $i^2 + 1 = 0$

Destructive particle frequency interference (D) is: $D = (f_{SR} - if_{SO})$

The product cancels: CD = 0

$$(f_{SR} + if_{SO})(f_{SR} - if_{SO}) = 0$$

$$f_{\rm SR}^2 + f_{\rm SO}^2 = 0$$

$$f_{SR} = -if_{SO}$$

Special Frequencies;

The frequencies of space-time are: $f_t^2 = f_R^2 + f_{\lambda}^2$ (wavelength interval)

 $f_t^2 = f_R^2 - f_S^2$ (displacement interval)

Special frequencies $(f_{t1}, f_{t2}, f_{Sr}, f_{SR})$ are:

 $f_t^2 = f_{t1}f_{t2}$ assume; Cos(T) = $f_{t1}/f_t = f_t/f_{t2}$ where; f_t is present, f_{t1} is past, f_{t2} is future

 $f_S^2 = v_S^2/R_G^2 = v_S^2/rR = (v_S/r)(v_S/R) = (f_{Sr})(f_{SR})$

The frequencies of displacement space-time are: $f_t^2 = f_R^2 - f_S^2$

The scalar frequency field associated with a primary object is: $f_{t1}f_{t2} = f_R^2 - (f_{Sr})(f_{SR})$

 $f_{t1}f_{t2} = f_R^2 - (f_{Sr})(-if_{S0})$

 $f_{t1}f_{t2} = f_R^2 + i(f_{Sr})(f_{S0})$

Interaction;

The Schwarzschild metric may be modified to give the Schrodinger equation.

Two objects interact. The frequency field of a primary object interacts with the momentum (p_2) of a secondary object. The result is a scalar force field. The interaction is:

$$(f_{t1}p_2)(f_{t2}p_2) = (f_Rp_2)^2 + i(f_{Sr}p_2)(f_{S0}p_2)$$

Force (F_n) is: $F_n = f_n p_2$

Giving a scalar force field: $F_{t1}F_{t2} = F_R^2 + iF_{Sr}F_{S0}$

Force (F_n) is: $F_n = E_n/r$

Giving: $E_{t1}E_{t2}/r^2 = E_R^2/r^2 + iE_{Sr}E_{S0}/r^2$

Energies of the interaction are: $E_{t1}E_{t2} = E_R^2 + iE_{Sr}E_{SO}$

Energy definitions are:

 E_{t1} is potential energy; $E_{t1} = V$

 E_{t2} is kinetic energy; $E_{t2} = \frac{1}{2} \text{mv}_{t2}^2$

 E_R is photonic energy; $E_R = \frac{1}{2} \hbar f_R$

 E_{Sr} is photonic energy; $E_{Sr} = \hbar f_{Sr}$

 E_{S0} is kinetic energy; $E_{S0} = \frac{1}{2} \text{mv}_{S0}^2$

Where: \hbar is the reduced Plank constant; $\hbar = h/2\pi$

Energy definitions give the energies of interaction:

$$V(\%mv_{t2}^2) = (\%\hbar f_R)^2 + i(\hbar f_{Sr})(\%mv_{S0}^2)$$

$$-\frac{1}{2}\hbar^2 f_R^2 + V(mv_{t2}^2) = i(\hbar f_{Sr})(mv_{S0}^2)$$

Frequency definitions are:

$$f_{Sr} = \partial/\partial t$$
 (operator)

$$f_R^2 = \partial^2 v_R^2 / \partial R^2$$

The energies of interaction may be written as:

$$-\frac{1}{2}\hbar^{2}(\partial^{2}v_{R}^{2}/\partial R^{2}) + V(mv_{t2}^{2}) = i\hbar(\partial/\partial t)(mv_{s0}^{2})$$

$$-\frac{1}{2}\hbar^{2}(\partial^{2}/\partial R^{2})v_{R}^{2} + V(mv_{t2}^{2}) = i\hbar(\partial/\partial t)(mv_{s0}^{2})$$

Velocity definitions are:

$$v_R = v_{t2} = v_{S0} = \psi/t$$
 where; ψ is a wave function

The energies of interaction may be written as:

$$-\frac{1}{2}\hbar^2(\partial^2/\partial R^2)(\psi^2/t^2) + Vm(\psi^2/t^2) = i\hbar(\partial/\partial t)m(\psi^2/t^2)$$

Giving the Schrodinger wave equation: $-(\hbar^2/2m)(\partial^2/\partial R^2)\psi + V\psi = i\hbar(\partial/\partial t)\psi$

Where the spatial operator $(\partial^2/\partial R^2)$ is; $\partial^2/\partial R^2 = \partial^2/\partial x^2 + \partial^2/\partial y^2 + \partial^2/\partial z^2$ (LaPlace operator)

The operator equation for interaction is: $(\hbar^2/2m)(\partial^2/\partial R^2) - V + i\hbar(\partial/\partial t) = 0$

October 16, 2020 Page 5

Conclusion;

The Schwarzschild metric may be modified to represent frequency, leading to the Schrodinger equation.

October 16, 2020 Page 6