08 The Compton Distribution Ratio

The Compton Effect discovered in 1923 represents the interaction between a photon (x ray) and an electron. The interaction is elastic; the photon is "scattered", and the electron "recoils". The Compton equation relates a ratio of momentum to a scattering angle. The Compton equation also includes a "probability ratio", or "distribution ratio" which is related to the Lorentz distribution function.

The Compton Equation;

The Compton equation defines the change of wavelength of an x-ray photon after collision with an electron;

$$\lambda_2 - \lambda_1 = (h/m_e c)(1 - Cos\theta)$$

Where; λ_2 is the wavelength of the x-ray photon after the interaction

 λ_1 is the wavelength of the x-ray photon before the interaction ($\lambda_2 > \lambda_1$)

h is the Plank constant

c is the light constant

me is the rest mass of an electron

 θ is the scattering angle of the photon

It is convenient to represent the change in photonic wavelength (λ_3) : $\lambda_3 = \lambda_2 - \lambda_1$

The Compton equation may also be written as a ratio of momentum: $p_e/p_3 = 1 - Cos(\theta)$

Where: $p_e = m_e c$

 $p_3 = h/\lambda_3$ representing the momentum of an "exchange particle"

The Lorentz Distribution Function;

A "substance" is distributed over an infinite range of "distance". The distribution may be represented as a distribution wave (or bell-shaped curve). The curve is defined by a Lorentz distribution function (f_{L3}), which is a function of distance (x) from some point of reference. The function has three parameters (x_0,y,I) and is defined as:

$$f_{L3} = I \gamma^2 [(x - x_0)^2 + \gamma^2]^{-1}$$

Where: x is the "distribution distance" (from some reference point)

 $f_{\rm L3}$ is the probable value of the "distributed substance" at the distribution distance

The Compton Distribution Ratio

I is the "amplitude parameter" of the wave. It is the "probable peak value" of the distributed substance

 x_0 is the "location parameter" which specifies the "x location" of the peak value of the distributed substance

 γ is the "shape parameter" which specifies the shape of the distribution curve. A bell-curve has "sloping shape" that may range from "gentle" to "severe". The shape parameter (γ) is the "x location" of the half-maximum (½I).

It is appropriate to write: $y = x_v$

Giving: $f_{L3} = Ix_{\gamma}^{2}[(x - x_{0})^{2} + x_{\gamma}^{2}]^{-1}$

It is also appropriate to write: $f_{L3} = y_x$ and: $I = y_{max}$

Giving: $y_x = y_{max}x_v^2[(x - x_0)^2 + x_v^2]^{-1}$

It is convenient to assume: $x_0 = 0$

The "standard Lorentz distribution" is: $y_x = y_{max}x_y^2/(x^2 + x_y^2)$

The Lorentz Probability Ratio;

A "standard probability ratio" (R_{L30}) is: $R_{L30} = y_x/y_{max} = x_y^2/(x^2 + x_y^2) = x_y^2/x_R^2$

Where: $x_R^2 = x^2 + x_{\gamma}^2$

The standard probability ratio gives the probable ratio of distribution of a substance at some distance (x) from a point of reference, compared to unity.

If: x = 0, then: $R_{L30} = 1$

The Bell Curve;

The "distribution wave" or "bell-curve" may be represented by a variable point: (x, y_x)

The curve is an asymptote to: $y_x = 0$

Key points on the curve are: $~(-\infty,\,0)$, $(-x_\gamma\,,\,{}^{1}\!\!\!/\, y_{max})$, $(0,\,y_{max})$, $(x_\gamma\,,\,{}^{1}\!\!\!/\, y_{max})$, $(\infty,\,0)$

The Compton Probability Ratio;

The "Compton Probability Ratio" (R_{θ}) is: R_{θ} = y_{θx}/y_{θmax} = 2R_{L30} = 2x_{γ}²/x_R²

$$R_{\theta} = y_{\theta x}/y_{\theta max} = 2x_{v}^{2}/(x^{2} + x_{v}^{2})$$

Page 2

$$R_{\theta} = p_e/p_3 = 2x_{\gamma}^2/(x^2 + x_{\gamma}^2)$$

February 6, 2021

The Compton Distribution Ratio

Where: $y_{\theta x}/y_{\theta max} = p_e/p_3$ (a ratio of momentum)(also may be energy, or force, or acceleration)

$$p_e = m_e c$$

 $p_3 = h/\lambda_3$ representing the momentum of an "exchange particle"

Assume: $x_R^2 = x^2 + x_v^2$ and: $x_v = xTan(\frac{1}{2}\theta)$

Then: $2xx_y = x_R^2 Sin(\theta)$ and: $x^2 - x_y^2 = x_R^2 Cos(\theta)$

Giving: $1 - Cos(\theta) = 2x_{\gamma}^2/(x^2 + x_{\gamma}^2) = 2x_{\gamma}^2/x_{R}^2$

The Compton equation may be written as: $R_{\theta} = y_{\theta x}/y_{\theta max} = 2R_{L30} = 2x_{v}^{2}/x_{R}^{2}$

$$R_{\theta} = p_e/p_3 = 1 - Cos(\theta)$$

Conclusion;

The Compton equation includes a "probability ratio" (distribution ratio) which is related to the "Lorentz probability ratio".

February 6, 2021 Page 3