45 Rules of Direction

Assume two vectors may be multiplied in a variety of ways (dot product, cross product, and other products). Each vector contains a set of "basis vectors" (unit vectors). The basis vectors may also be identified as "directional vectors".

Each type of multiplier is represented as a "labelled general multiplier" (x_N) .

Where: N is a "product type number" (product label).

N = 0 gives the dot product

N = 1 gives the cross product

N = 2 gives a "star product"

N > 2 gives other vector products

A set of four "directional rules" are associated with each type. The "rules of direction" are a convenient way to represent various types of vector multiplication.

The Vectors:

Two 3D vectors (A, B) are:

$$A = A_1e_1 + A_2e_2 + A_3e_3$$

$$\mathbf{B} = B_1 \mathbf{e_1} + B_2 \mathbf{e_2} + B_3 \mathbf{e_3}$$

Where: $(A_1, A_2, A_3)(B_1, B_2, B_3)$ are scalar components of each vector

 (e_1, e_2, e_3) are directional vectors (unit vectors)

The General Vector Product:

A "labelled general multiplier" (x_N) represents all types of product.

The general 3D product is: $\mathbf{A} \times_{\mathbf{N}} \mathbf{B} = \Sigma \text{ Table}(\mathbf{x}_{\mathbf{N}})$

Where: Table $(x_N) =$

$A_1B_1e_1x_Ne_1$	A_1B_2 e ₁ x_N e ₂	A ₁ B ₃ e ₁ x _N e ₃
A ₂ B ₁ e₂ x _N e ₁	A ₂ B ₂ e₂ X _N e₂	A ₂ B ₃ e₂ X _N e₃
A ₃ B ₁ e₃ X _N e ₁	A ₃ B ₂ e₃ X _N e₂	A ₃ B ₃ e ₃ x _N e ₃

Each type of multiplier (x_N) has four rules of direction.

Rules of Direction

The Dot Product:

The dot product of two vectors returns a scalar, it is represented if: N = 0

The "dot multiplier" may be represented as: x₀

The 3D dot product is: $\mathbf{A} \times_0 \mathbf{B} = \Sigma \text{ Table}(\mathbf{x}_0)$

Where: Table $(x_0) =$

A ₁ B ₁ e ₁ x ₀ e ₁	A ₁ B ₂ e ₁ x ₀ e ₂	A ₁ B ₃ e ₁ x ₀ e ₃
$A_2B_1e_2x_0e_1$	A_2B_2 e ₂ x_0 e ₂	A ₂ B ₃ e₂ x ₀ e ₃
A_3B_1 e ₃ x_0 e ₁	A ₃ B ₂ e ₃ x ₀ e ₂	A ₃ B ₃ e ₃ x ₀ e ₃

The direction vectors are represented as: (e_n, e_p)

The four rules of direction for Dot products are:

Rule 1: $e_n x_0 e_n = 1$ Rule 2: $e_p x_0 e_p = 1$ Rule 3: $e_n x_0 e_p = 0$ Rule 4: $e_p x_0 e_n = 0$

Applying the rules of direction gives: Table $(x_0)_R$ =

A_1B_1	0	0
0	A_2B_2	0
0	0	A_3B_3

Giving a dot product: $A \times_0 B = A \cdot B = A_1 B_1 + A_2 B_2 + A_3 B_3$

The Cross Product:

The cross product returns a vector which is perpendicular to the plane of **A** and **B**.

It is represented if: N = 1

The "cross multiplier" may be represented as: x1

The 3D cross product is: $\mathbf{A} \times_1 \mathbf{B} = \Sigma \text{ Table}(x_1)$

Where: Table $(x_1) =$

A ₁ B ₁ e ₁ x ₁ e ₁	A ₁ B ₂ e ₁ x ₁ e ₂	A ₁ B ₃ e ₁ X ₁ e ₃
A_2B_1 e ₂ x_1 e ₁	A_2B_2 e ₂ x_1 e ₂	A ₂ B ₃ e₂ X ₁ e₃
A ₃ B ₁ e ₃ x ₁ e ₁	A ₃ B ₂ e₃ X ₁ e₂	A ₃ B ₃ e ₃ x ₁ e ₃

February 8, 2021 Page 2

Rules of direction for cross products:

Rule 1:
$$e_{nx}e_{n} = 0$$

Rule 2:
$$e_{px}e_p = 0$$
 Rule 3: $e_{nx}e_p = -e_0^{n+p}e_{6-n-p}$ Rule 4: $e_{px}e_n = -e_{nx}e_p$

Rule 4:
$$e_{nx}e_{n} = -e_{nx}e_{n}$$

Where: $e_0 = -1$

Applying direction rules gives: Table $(x_1)_R =$

0	A ₁ B ₂ e ₃	-A ₁ B ₃ e ₂
-A ₂ B ₁ e ₃	0	A ₂ B ₃ e ₁
A ₃ B ₁ e₂	-A ₃ B ₂ e ₁	0

Giving:

$$AxB = (A_2B_3 - A_3B_2)e_1 + (A_3B_1 - A_1B_3)e_2 + (A_1B_2 - A_2B_1)e_3$$

The Star Product:

The star product returns a vector which is not perpendicular to the plane of **A** and **B**.

It is represented if:

N = 2

The "star multiplier" may be represented as: x2

The 3D star product is:

$$\mathbf{A} \times_2 \mathbf{B} = \mathbf{A} \times \mathbf{B} = \mathbf{\Sigma} \operatorname{Table}(\mathbf{x}_2)$$

Where:

Table $(x_2) =$

A ₁ B ₁ e ₁ x ₂ e ₁	A_1B_2 e ₁ x_2 e ₂	A ₁ B ₃ e ₁ x ₂ e ₃
A ₂ B ₁ e₂ x ₂ e ₁	A ₂ B ₂ e₂ X ₂ e₂	A ₂ B ₃ e₂ X ₂ e ₃
A ₃ B ₁ e₃ x ₂ e ₁	A ₃ B ₂ e₃ X ₂ e₂	A ₃ B ₃ e ₃ x ₂ e ₃

Rules of direction for star products:

Rule 1:
$$e_n x_2 e_n = e_{4-n}$$
 Rule 2: $e_p x_2 e_p = -e_{4-p}$ Rule 3: $e_n x_2 e_p = 0$ Rule 4: $e_p x_2 e_n = 0$

Rule 2:
$$e_p x_2 e_p = -e_{4-p}$$

Rule 3:
$$e_n x_2 e_n = 0$$

Rule 4:
$$e_n x_2 e_n = 0$$

Applying direction rules gives:

A ₁ B ₁ e ₃	0	0
0	A ₂ B ₂ e₂	0
0	0	A ₃ B ₃ e ₁

Giving:

$$\mathbf{A}^*\mathbf{B} = A_3B_3\mathbf{e_1} + A_2B_2\mathbf{e_2} + A_1B_1\mathbf{e_3}$$

Conclusion:

Vector products of various types are defined by rules of direction. A variety of products may be of use in physics. The star product may represent a gravitational field.

February 8, 2021