New Number

Marjanović Srdan , ms.biljanica@gmail.com

December 17, 2023

1 Introduction

Let's look at the picture showing the relationship between the two lengths. the distance is the same AB=CD, AB is a straight line, CD is empty, we cannot describe this situation with numbers, we need to introduce new numbers .

Figure 1:

2 Empty numbers

 $\underline{R} = \{ \dots \infty \underline{-2} \times \underline{-1} \times 0 \times \underline{1} \times \underline{2} \times \dots \}$

 ∞ - all empty real numbers between two integers .

Position of empty numbers on the number line .

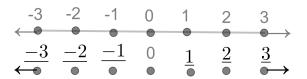


Figure 2:

3 Combined numbers

Theorem-R and \underline{R} form concatenated numbers, made up of $n(n \geq 2)$ members

$$R_c = \{x_1y_1, y_2x_2, x_3y_3x_4, y_4x_5y_5, \dots\}, x_n \in R, y_n \in \underline{R}.$$

Examples of where there are combined numbers on the number line .

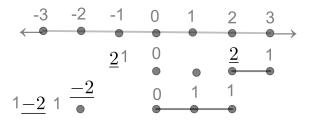


Figure 3:

All real numbers $R_s = \{R, \underline{R}, R_c\}$

Length of the combined number:

Length 5 - $1\underline{2}2$, $1\underline{1}3$, ...

..

Lenght 10 - 343, $\underline{8}11$, ...

...

We expand the set of complex numbers $C = (a, b), (a, b \in R_s)$

4 Calculation operations

4.1 Standard operations

4.1.1 Addition

We calculate using the length of the combined number $2+\underline{3}=2\underline{3}$, $\underline{3}+2=\underline{32}$, $2\underline{42}+2\underline{32}=2\underline{443}2$, $2+\underline{323}=2\underline{323}$

4.1.2 Subtraction

We calculate using the length of the combined number $2-\underline{3}=-1$, $\underline{3}-2=\underline{1}$, $2\underline{4}2-2\underline{3}2=1$, $2-\underline{3}2\underline{3}=-6$

4.1.3 Multiplication

$$2\times \underline{3}=6$$
 , $\underline{3}\times 2=\underline{6}$, $2\underline{4}2\times 2\underline{3}2=$ not possible , $2\times \underline{3}2\underline{3}=$ not possible , $\underline{3}2\underline{3}\times 2=\underline{3}2\underline{6}2\underline{3}$

4.1.4 Division

 $2\div\underline{3}=0,666...$, $\underline{3}\div2=\underline{1,5}$, $2\underline{4}2\div2\underline{3}2=$ not possible , $2\div\underline{3}2\underline{3}=$ not possible , $\underline{3}2\underline{3}\div2=\underline{4}$

4.1.5 Exponentiation

 $2^{3} = 8$, $3^{2} = 9$, $242^{232} = \text{not possible}$, $2^{323} = \text{not possible}$,

4.1.6 Roots

 $\sqrt[3]{2}=1,25...$, $\sqrt{\underline{3}}=1,72...$, $\sqrt[242]{2}\underline{\underline{3}}2=$ not possible , $\sqrt{\underline{3}}\underline{\underline{23}}=$ not possible .

4.2 Modified standard operations

Each member performs an operation with another member, the results are merged .

Marking the operation:

Addition +/

Subtraction -/

Multiplication \times /

Division ÷/

Exponentiation $a^{/b}$ or ./

Roots $\sqrt{/}$

Empty operation v

4.2.1 One layer

$$654+^{/}123=\{1329,51123,927\}$$

procedure:

6+1=7, 6+2=62, 6+3=9, we connect 7 and 62 and 9, 1329

 $\underline{5}+1=\underline{5}1$, $\underline{5}+\underline{2}=\underline{7}$, $\underline{5}+3=\underline{5}3$, we connect $\underline{5}1$ and $\underline{7}$ and $\underline{5}3$, $\underline{5}1\underline{12}3$

4+1=5, 4+2=42, 4+3=7, we connect 5 and 42 and 7, 927

The procedure is the same for other operations

4.2.2 Multi layer

$$6\underline{5}4 \div 1\underline{2}3 = \{12, \underline{9.1...}, 24\}$$
×/

Figure 4:

procedure:

 $6-\sqrt{123}$, 6-1=5, 6-2=4, 6-3=3, we connect 5 and 4 and 3, 12

 $\underline{5} \div^/ 1\underline{2}3$, $\underline{5} \div 1\underline{=}\underline{5}$, $\underline{5} \div \underline{2}\underline{=}\underline{2,5}$, $\underline{5} \div 3\underline{=}\underline{1,6...}$, we connect $\underline{5}$ and $\underline{2,5}$ and 1,6... , 9,1...

4 ×/ 123 , 4×1=4 , 4×2=8 , 4×3=12 , we connect 4 and 8 and 12 , 24

The procedure is the same for other operations

4.2.3 Horizontally one layer

$$6\underline{5}4 - \frac{1}{2}3 = \{50, \underline{34}3, 26\}$$

procedure:

6-1=5, $6^2=36$, 6+3=9, we connect 5 and 36 and 9, 50

 $\underline{5}-1=\underline{4}$, $\underline{5}^2=\underline{25}$, $\underline{5}+3=\underline{5}3$, we connect $\underline{4}$ and $\underline{25}$ and $\underline{5}3$, $\underline{34}3$

4-1=3 , $4\stackrel{?}{=}16$, 4+3=7 , we connect 3 and 16 and 7 , 26

The procedure is the same for other operations .

4.2.4 Empty operation

 $654 \times \sqrt{v} - 123 = \{ 15, 12, 9 \}$

procedure:

 $6{\times}1{=}6$, 6 transmits , 6-3=3 , we connect 6 and 6 and 3 , 15

 $\underline{5}{\times}1{=}\underline{5}$, $\underline{5}$ transmits , $\underline{5}{\text{-}}3{=}\underline{2},$ we connect $\underline{5}$ and $\underline{5}$ and $\underline{2}$, $\underline{12}$

 $4\times1=4$, 4 transmits, 4-3=1, we connect 4 and 4 and 1, 9

The procedure is the same for other operations.

4.2.5 Horizontally multi layer

$$654v + -123 = \{15, 14, 20\}$$
 $v \ v \times$

Figure 5:

procedure:

 $6\times 1=6$, $6\div \underline{2}=3$, 6 transmits , we connect 6 and 3 and 6 , 15

 $\underline{5}$ transmits, $\underline{5}+\underline{2}=\underline{7}$, $\underline{5}-3=\underline{2}$, we connect $\underline{5}$ and $\underline{7}$ and $\underline{2}$, $\underline{14}$

4 transmits, 4 transmits, $4 \times 3 = 12$, we connect 4 and 4 and 12, 20

The procedure is the same for other operations .

4.3 Logic - modified standard operations

In logic there is true-false, here there is R and \underline{R}

Marking the operation:

Addition $+^n$

Subtraction $-^n$

Multiplication \times^n

Division \div^n

Exponentiation $a^{n/b}$ or .n

Roots $\sqrt{n/n}$,

 $n \leq 6$

Logic:

n=1 , R and $R \to R$

n=2 , R or $\underline{R} \to R$

n=3 , \underline{R} and $\underline{R} \to R$

n=4 , \underline{R} and $\underline{R} \to \underline{R}$

n=5 , R or $\underline{R} \to \underline{R}$

n=6 , R and $R \to \underline{R}$

The first operation is logic, if it is impossible it gives the result 0, the second operation is not performed .

4.3.1 One layer

$$654 \times^2 123 = \{ 12, 20, 8 \}$$

procedure:

$$0$$
 no 6×1 , $6\times \underline{2}=12$, 0 no 6×3 , we connect 0 and 12 and 0 , 12

$$\underline{5}\times 1=5$$
 , no $\underline{5}\times \underline{2}$, $\underline{5}\times 3=15$, we connect 5 and 0 and 15 , 20

$$0$$
 no 4×1 , $4\times \underline{2}=8$, 0 no 4×3 , we connect 0 and 8 and 0 , 8

The procedure is the same for other operations .

4.3.2 Multi layer

$$\begin{array}{c}
+^{1} \\
6\underline{5}4 \div^{5} 1\underline{2}3 = \{16, \underline{7.6...}, 0\}\\
-^{4}
\end{array}$$

Figure 6:

procedure:

 $6{+}1{=}7$, 0 no $6+\underline{2}$, $6{+}3{=}9$, we connect 7 and 0 and 9 , 16

 $\underline{5}\div 1=\underline{5}$, 0 no $\underline{5}\div \underline{2}$, $\underline{5}\div 3=\underline{1.6...}$, we connect $\underline{5}$ and 0 and $\underline{1.6...}$, $\underline{7.6...}$

0 no 4--1 , 0 no $4-\underline{2}$, 0 no 4--3 , we connect 0 and 0 and 0 , 0

The procedure is the same for other operations.

4.3.3 Horizontally one layer

$$654 \times^2 \div^2 +^6 123 = \{39, 5, 127\}$$

procedure:

0 no 6×1 , $6\div \underline{2}=3$, $6+3=\underline{9}$, we connect 0 and 3 and $\underline{9}$, $3\underline{9}$

 $\underline{5} \times 1 = 5$, 0 no $\underline{5} \div \underline{2}$, 0 no $\underline{5} + 3$, we connect 5 and 0 and 0, 5

0 no 4×1 , $4 \div \underline{3} = 12$, $4 + 3 = \underline{7}$, we connect 0 and 12 and $\underline{7}$, $12\underline{7}$

The procedure is the same for other operations .

4.3.4 Horizontally multi layer

Figure 7:

procedure:

0 no 6×1 , 6 transmits , 6 transmits , we connect 0 and 6 and 6 ,12

 $\underline{5}{+}1{=}6$, $\underline{5}$ transmits , 0 no $\underline{5}{+}1$, we connect 6 and $\underline{5}$ and 0 , $6\underline{5}$

0 no $4\div 1$, 0 no $4+\underline{2}$, 4 transmits , we connect 0 and 0 and 4 , 4

The procedure is the same for other operations .

4.4 Other operations

There are more operations, you will be introduced soon.

5 Mathematics revision

The mathematics you know is limited, which is a consequence of the large number of axioms . My approach is that there is a mathematical space and two starting axioms . Natural axiom - natural straight line (1), natural empty ($\underline{1}$) . Real axiom - reals straights lines (0.1, 0.01, 0.001, ...) , reals emptys ($\underline{0.1}, \underline{0.01}, \underline{0.001}, \ldots$) . Since I do mathematical research in my spare time , I discovered many things based on my axioms .