MS MATHEMATICS

Marjanović Srđan
M.Biljanica,16201 Manojlovce
Serbia
ms.biljanica@gmail.com
381 600 785 471

Introduction

There is a mathematical space, there is a basic axiom, everything else is evidence

REAL MATHEMATICS

axiom

Basics lengths

Basics gaps

$$\underbrace{1}_{\bullet}(\underline{0.1},\underline{0.01},\ldots)$$

Basics lengths defined by points 0 and 1(0.1, 0.01, ...), length 0-1 (0 - 0.1, 0 - 0.01, ...)

Basics gaps defined by points 0 and $\frac{1}{2}$ (0.1, 0.01, ...), gap 0- $\frac{1}{2}$ (0 - 0.1, 0 - 0.01, ...)

Theorem

Infinite joining of basic lengths (gaps) in the direction of points 0 and 1(0.1, 0.01,...) and $0 \underline{1}.(0.1, 0.01,...)$

Proof

Definition - A basic set consists of basic parts that can be copied infinitely, a set is a version of the copied basic parts from the basic set

Basic set of dot labels $O=\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, .\}$

Set of points

$$B_d = \{0 \infty 1 \infty 2 \infty 3 \infty 4 \infty 5...\}, \ \infty = \{0.00..01, ..., 0.99..99\}$$

Basic set of dot labels $T = \{0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ...\}$

Set of points

$$B_p = \{\underline{0} \times \underline{1} \times \underline{2} \times \underline{3} \times \underline{4} \times \underline{5} \dots\}, \ \infty = \{\underline{0.00..01}, \dots, \underline{0.99..99}\}$$

Semi line

Gap semi line

Theorem

There is a relation between two points on a semi line (gap semi line)

Proof

Length

Gap

Theorem

There is a relation between the point 0 and all points in on a semi line (gap semi line)

Proof

Basic set of real length numbers

$$R_d = \{0 \infty 1 \infty 2 \infty 3 \infty 4 \infty 5....\}, \ \infty = \{0.000...1, ..., 0.99...99\}$$

Basic set of real gap numbers

$$\underline{R} = \{ 0 \times 1 \times 2 \times 3 \times 4 \times 5 \dots \}, \ \infty = \{ 0.00.01, \dots, 0.99.99 \ \}$$

Theorem

Real length numbers and real gap numbers become composite numbers when combined.

Proof

Basic combined real numbers

$$R_k = \{x \in R_d / x \in R\} = \{xx, xx, xxx, xxx, ...\}$$

Theorem

The basic sets of real length (real gap, combinatorial real) numbers form a single whole

Proof

$$R = \{R_d, \underline{R}, R_k\} = \{0\infty1\infty2\infty3\infty4\infty\infty5..\}, \ \infty = \{0.000...01, ..., 0.99...99\}$$

Note: real numbers are displayed as real integers, others are implied (gap real numbers, combined real numbers)

Numbers semi line

Numbers gap semi line

Theorem

There are infinitely many semi line. which contain at least one length (one gap)

Proof

Combined semi line

Theorem

There is a relation between two points combined semi line, between which there is at least one length and one gap.

Proof

Combined along

Theorem

Two real numbers connected by point 0, in the direction of points $1(\underline{1})$ and 0

Proof

$$2_2$$
 1_2 0 1 2

Two real numbers

$$R^2 = \{R_2, R\}$$

Line Number line

Theorem

There are numbers whose beginning point is 0, ending on the number half-line

Proof

Lineacomplex numbers

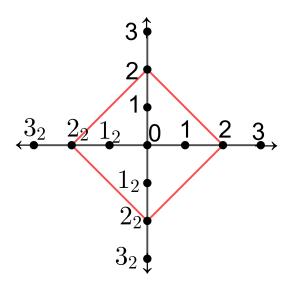
$$\mathbb{C}_l = (R, R_2)$$

PLANE MATHEMATICS

Theorem

Two number lines connected at point 0, the equality slides along a half-line from 0 to infinity, the equality is interconnected (along, red color), intersects mathematical space

Proof



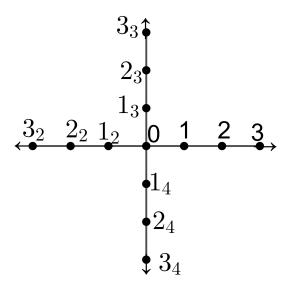
Plane

Theorem

Infinitely numbered half-lines meet the number line at point 0.

Proof

$$R_4^3 = \{R_3, R_2, R\} \\ R_4 = \{R_4, R_3, R_2, R\}$$



Theorem

There are numbers whose beginning point is 0, ending on the number half-line

Proof

$$C_3 = (R, R_2, R_3)$$

 $C_4 = (R, R_2, R_3, R_4)$

Line n complex numbers

Theorem

Two numbers have contact, there is a multiple connection.

Proof

$$a +_b c = d$$

a – first number

b- multiple connection

 $c-second\ number$

d – solution

Theorem

Two numbers have contact (one must be combined) through their parts, there is a multiple connection

Proof

$$a \stackrel{\circ}{+}_b c = d$$

- a-first number
- b- multiple connection
- c second number
- d-solution