Naked Science Forum

Non Life Sciences => Physics, Astronomy & Cosmology => Topic started by: mprincess on 10/12/2019 17:27:21

Title: why is mitochondra an unusual organelle?
Post by: mprincess on 10/12/2019 17:27:21
MITOCHONDRIA THE UNUSUAL YET USEFUL ORGANELLE

Mitochondria are rod-shaped organelles that can be considered the power generators of the cell, converting oxygen and nutrients into adenosine triphosphate (ATP). ATP is the chemical energy "currency" of the cell that powers the cell's metabolic activities.
Mitochondria are unusual organelles. They act as the power plants of the cell, are surrounded by two membranes, and have their own genome. They also divide independently of the cell in which they reside, meaning mitochondrial replication is not coupled to cell division. Some of these features are holdovers from the ancient ancestors of mitochondria, which were likely free-living prokaryotes.
What Is the Origin of Mitochondria?
Mitochondria are thought to have originated from an ancient symbiosis that resulted when a nucleated cell engulfed an aerobic prokaryote. The engulfed cell came to rely on the protective environment of the host cell, and, conversely, the host cell came to rely on the engulfed prokaryote for energy production. Over time, the descendants of the engulfed prokaryote developed into mitochondria, and the work of these organelles using oxygen to create energy became critical to eukaryotic evolution
Modern mitochondria have striking similarities to some modern prokaryotes, even though they have diverged significantly since the ancient symbiotic event. For example, the inner mitochondrial membrane contains electron transport proteins like the plasma membrane of prokaryotes, and mitochondria also have their own prokaryote-like circular genome. One difference is that these organelles are thought to have lost most of the genes once carried by their prokaryotic ancestor. Although present-day mitochondria do synthesize a few of their own proteins, the vast majority of the proteins they require are now encoded in the nuclear genome.
What Is the Purpose of a Mitochondrial Membranes?
As previously mentioned, mitochondria contain two major membranes. The outer mitochondrial membrane fully surrounds the inner membrane, with a small intermembrane space in between. The outer membrane has many protein-based pores that are big enough to allow the passage of ions and molecules as large as a small protein. In contrast, the inner membrane has much more restricted permeability, much like the plasma membrane of a cell. The inner membrane is also loaded with proteins involved in electron transport and ATP synthesis. This membrane surrounds the mitochondrial matrix, where the citric acid cycle produces the electrons that travel from one protein complex to the next in the inner membrane. At the end of this electron transport chain, the final electron acceptor is oxygen, and this ultimately forms water (H20). At the same time, the electron transport chain produces ATP. (This is why the the process is called oxidative phosphorylation.)
During electron transport, the participating protein complexes push protons from the matrix out to the intermembrane space. This creates a concentration gradient of protons that another protein complex, called ATP synthase, uses to power synthesis of the energy carrier molecule ATP
Is the Mitochondrial Genome Still Functional?
Mitochondrial genomes are very small and show a great deal of variation as a result of divergent evolution. Mitochondrial genes that have been conserved across evolution include rRNA genes, tRNA genes, and a small number of genes that encode proteins involved in electron transport and ATP synthesis. The mitochondrial genome retains similarity to its prokaryotic ancestor, as does some of the machinery mitochondria use to synthesize proteins. In fact, mitochondrial rRNAs more closely resemble bacterial rRNAs than the eukaryotic rRNAs found in cell cytoplasm. In addition, some of the codons that mitochondria use to specify amino acids differ from the standard eukaryotic codons.

Mitochondria, the so-called "powerhouses" of cells, are unusual organelles in that they are surrounded by a double membrane and retain their own small genome. They also divide independently of the cell cycle by simple fission. Mitochondrial division is stimulated by energy demand, so cells with an increased need for energy contain greater numbers of these organelles than cells with lower energy needs.

Title: Re: why is mitochondra an unusual organelle?
Post by: Halc on 10/12/2019 17:38:04
This posting is not original, but seems to be an unmodified copy of the text from Cell Biology for Seminars, Unit 3.4.
No question is asked by the poster, nor any comment made, nor any citation given for the origin of the text.
Title: Re: why is mitochondra an unusual organelle?
Post by: Colin2B on 10/12/2019 23:09:25
This posting is not original,
Given the rule about not posting material previously published elsewhere, and lack of a real question, it would be reasonable to delete this post.

Does the poster have any comment?