1

**Physics, Astronomy & Cosmology / Having an Aether and Special Relativity Too?**

« **on:**06/10/2007 13:57:33 »

With Special Relativity all observers see surrounding space as stationary with respect to them. In other systems, for example, a sound source moving through air, a disturbance takes place with respect to the surrounding medium.

From a purely epistemological view Special Relativity is a problem since cause and effect would seem to teach that a disturbance from an object imbedded in a medium would be independent of motion of the object. Because this is not true for Special Relativity, conventional wisdom has been that the concept of a medium must be discarded. It is hard to see, however, how this rather draconian view solves the underlying problem; the classical analogy being something about babies and bath-water. Perhaps there is another way.

Consider a Euclidean four-space with a universal time parameter. Let us define an aether in the space that has elastic and inertial properties so that it makes sense to consider waves in the medium. When an object in the aether causes disturbance, the resulting waves travel with respect to the aether so that we have a situation much like acoustics; but, in four dimensions.

In this four-space let us conceive of a particle (as opposed to the object of the previous paragraph) as a point moving on a path in the four-space. The particle’s size in the three-space perpendicular to its direction of travel is assumed to be small. The path can be in any direction in four-space and, for Special Relativity, need not be curved. The particle travels along this path at the speed of wave propagation in the aether with time determining its position along the path. Since particles traveling more or less in the same direction at nearly the same time can be put together to make observers (all observers are assumed to be collections of particles), we shall consider that all observers are moving at the same rate as a particle, and this rate is the same as signal propagation in the aether.

Since observers communicate with each other with signals traveling at the same rate as their speed with respect to the aether, we must examine the effects of motion of each observer with respect to the aether and each other. Observers following paths in different directions of limited angle with respect to the each other appear to be moving with respect to each other. Since the aether is isotropic and all observers are moving at the same speed with respect to the aether, we should expect each to see the same situation as any other since only their direction of travel is different and the aether is assumed isotropic. This property matches Special Relativity.

Furthermore, since each observer is moving at the same speed as his means of communication in the four-space, the coordinate in his direction of motion is annihilated so that he observes a three-space perpendicular to his direction of travel. This three-space, with its fourth coordinate obscured by being in the direction of travel of the observer, can rotate in four-space to change its direction of motion with respect to other observers. By these means observers see the space of Special Relativity.

My question is this. Is this model suitable to explain Special Relativity? If not, why not?

From a purely epistemological view Special Relativity is a problem since cause and effect would seem to teach that a disturbance from an object imbedded in a medium would be independent of motion of the object. Because this is not true for Special Relativity, conventional wisdom has been that the concept of a medium must be discarded. It is hard to see, however, how this rather draconian view solves the underlying problem; the classical analogy being something about babies and bath-water. Perhaps there is another way.

Consider a Euclidean four-space with a universal time parameter. Let us define an aether in the space that has elastic and inertial properties so that it makes sense to consider waves in the medium. When an object in the aether causes disturbance, the resulting waves travel with respect to the aether so that we have a situation much like acoustics; but, in four dimensions.

In this four-space let us conceive of a particle (as opposed to the object of the previous paragraph) as a point moving on a path in the four-space. The particle’s size in the three-space perpendicular to its direction of travel is assumed to be small. The path can be in any direction in four-space and, for Special Relativity, need not be curved. The particle travels along this path at the speed of wave propagation in the aether with time determining its position along the path. Since particles traveling more or less in the same direction at nearly the same time can be put together to make observers (all observers are assumed to be collections of particles), we shall consider that all observers are moving at the same rate as a particle, and this rate is the same as signal propagation in the aether.

Since observers communicate with each other with signals traveling at the same rate as their speed with respect to the aether, we must examine the effects of motion of each observer with respect to the aether and each other. Observers following paths in different directions of limited angle with respect to the each other appear to be moving with respect to each other. Since the aether is isotropic and all observers are moving at the same speed with respect to the aether, we should expect each to see the same situation as any other since only their direction of travel is different and the aether is assumed isotropic. This property matches Special Relativity.

Furthermore, since each observer is moving at the same speed as his means of communication in the four-space, the coordinate in his direction of motion is annihilated so that he observes a three-space perpendicular to his direction of travel. This three-space, with its fourth coordinate obscured by being in the direction of travel of the observer, can rotate in four-space to change its direction of motion with respect to other observers. By these means observers see the space of Special Relativity.

My question is this. Is this model suitable to explain Special Relativity? If not, why not?