0 Members and 1 Guest are viewing this topic.

In the so called most rational of endeavors mathematics, absurdity or paradox and self-contradiction goes right to the heart of it. In 1930 the mathematician Hilbert began a program to prove that mathematics was consistent. With the discovery of such mathematical paradoxes as the Burli-Forti paradox, Russell’s paradox, Cantor’s paradox and Skolem’s paradox by early 1930’s as Bunch notes, Hilbert’s program did not succeed such that “disagreement about how to eliminate contradictions were replaced by discussions of how to live with contradictions in mathematics." Attempts to avoid the paradoxes led to other paradoxical notions but most mathematicians rejected these notions. Thus the present situation is that mathematics cannot be formulated, except in axiomatic theory, without contradictions without the loss of useful results. With regard to axiomatic theory, this cannot be proven to be consistent with the result that paradoxes can occur at any time. As Bunch states:“None of them [paradoxes] has been resolved by thinking the way mathematicians thought until the end of the nineteenth century. To get around them requires some reformulation of mathematics. Most reformulations except for axiomatic set theory, results in the loss of mathematical ideas and results that have proven to be extremely useful. Axiomatic set theory explicitly eliminates the known paradoxes, but cannot be shown to be consistent. Therefore, other paradoxes can occur at any time [i.e. the Skolem paradox].”

Heisenberg notes that “ the strangest experience of those years was that the paradoxes of quantum theory did not disappear during this process of clarification; on the contrary they have become even more marked and exciting.” In regard to the paradoxes and contradictions of quantum theory Wick state the orthodox view when he says “here my opinion of the orthodox quantum mechanics, like Bohr, comes down to the meaning of words. “Classical” and “complementarity”, insult and commendation, are euphemisms; the belief concealed is that Nature has been found in a contradiction. But quantum physicists are not simpletons. In their hearts they know such a claim is philosophically unacceptable and would be rejected in other sciences.” Wick notes “ I believe orthodox quantum theorists [slates] reason, consciously or unconsciously, something like this. The microscopic world exhibits paradoxes or contradictions and this fact is reflected in the best theory describing it.” Now even though quantum mechanics is paradoxical no experiment has contradicted quantum theory predictions and quantum theory is the most successful that has ever existed in science. Thus it is a mystery how our scientific and mathematical theories have the success they do seeing that in terms of Aristotelian logic they are absurd , or meaningless or in other words not ‘true’.

In mathematical logic, Gödel's incompleteness theorems, proved by Kurt Gödel in 1931, are two theorems stating inherent limitations of all but the most trivial formal systems for arithmetic of mathematical interest.The theorems are also of considerable importance to the philosophy of mathematics. They are widely regarded as showing that Hilbert's program to find a complete and consistent set of axioms for all of mathematics is impossible, thus giving a negative answer to Hilbert's second problem. Authors such as J. R. Lucas have argued that the theorems have implications in wider areas of philosophy and even cognitive science, but these claims are less generally accepted.Gödel's first incompleteness theorem, perhaps the single most celebrated result in mathematical logic, states that:For any consistent formal, computably enumerable theory that proves basic arithmetical truths, an arithmetical statement that is true, but not provable in the theory, can be constructed.1 That is, any effectively generated theory capable of expressing elementary arithmetic cannot be both consistent and complete. Gödel's second incompleteness theorem can be stated as follows:For any formal recursively enumerable (i.e. effectively generated) theory T including basic arithmetical truths and also certain truths about formal provability, T includes a statement of its own consistency if and only if T is inconsistent.

in terms of what dean is getting at meaninglessness = contradiction paradoxif something is illogical then it = meaninglessness

i am saying all systems end in paradox or contradiction and thus are meaninglessness

no dean is not destroying science he is regenerating itbecauseby seeing it logically cant be true but it nevertheless still works we have a mysteryhow/why does it work when it cant be logically true

quotenothe Ptolemaic model of the universe worked for the ancient world but it was not truethe Bohr model of the atom worked but it was not true

so you are going to take a trip to mars based on the Ptolemaic model

thus as dean says science maths are nothing but mythology

science maths has no truth it is all mythology in 100years what you think is truth or partial truth will be just discarded theories of no truth value like the theories of 100 years ago -all myth

Like a blackhole? Everything breaksdown into meaninglessness and contradicting, the closer you get to the center?

limitations indicate they are not true -thus they are myths a theory is either true or not true it cant be half true

thus as a whole the theory is myth

nothing -there is nothing you can do as all views end in meaninglessness or mythologyscience maths will always be nothing but mythical thinking -whose explanations will always end in meaninglessness-even though they get things to work-that is the mystery how do they work when the explanations are just myths

quoteThis is analogous with the solipsist view of the universesolipsism ends in meaninglessness -as wittgenstein showed

quoteYou can stick whatever labels you wish on it, but you have avoided answering the question - what do you think we should do?answer nothing -there is nothing you can do as all views end in meaninglessness or mythologyscience maths will always be nothing but mythical thinking -whose explanations will always end in meaninglessness-even though they get things to work-that is the mystery how do they work when the explanations are just myths

Indeed, that we get things to work, and that progressively we get more and more to work shows that within our maths there is a greater and increasing degree of truth, so the idea that it is 'untruthful' is flawed

take the Bohr model of the atom a complete myth no shred of truth in it now -yet at the time they made the A bomb based on a complete mythtake the Ptolemaic model of the universe complete myth but they got things to work using it ie the could predict-no shred of truth in ittake the newtonian universe since relativity newtons universe is only an approximation and as such it is all myth no shred of truth in it no absolute time no absolute frame of reference -yet it works

"All our science, measured against reality, is primitive and childlike - and yet it is the most precious thing we have."Albert Einstein.

Quote"All our science, measured against reality, is primitive and childlike - and yet it is the most precious thing we have."Albert Einstein.and Einstein was a myth makerand sciences reality is just a mythical construction just like any so called primitive cultures reality

One has to understand myth to mean not entirely true and then conclude with it meaning not at all true.It is a cheap and flaccid contortion. It is a nothing argument, because in reality it is not an argument at all. It is word trickery, dull minded sophistry dressed up as philosophical thought.

Except science is re-assessed as a part of the very culture and nature of science

Oh, and in what way was Einstein a myth maker? read his words that I posted here. He does not claim to understand the universe, he does not claim that science does. Others make the myths, and then others seek to 'debunk' what was never intended

I would suggest, as a counter to this drivel, that you read 'The Demon Haunted World' by Carl Sagan.I suggest 'Science, Order and Creativity' by Dr David Bohm.

What do you mean? Are you suggesting that there is no truth in Newton's laws? That would be strange claim to make considering that they are still used, within a context, and still, within those contexts, keep foretelling truthfully.You still haven't answered, what is it that you propose as an alternative to gaining insight into the nature of our universe? I have a feeling I know the answer already, but surprise me, please...

that science is not a myth.