0 Members and 1 Guest are viewing this topic.

As the mass of the black hole decreased, the area of the event horizon would have to go down, thus violating the law that, classically, the area cannot decrease [7, 12]. This violation must, presumably, be caused by a flux of negative energy across the event horizon which balances the positive energy flux emitted to infinity. One might picture this negative energy flux in the following way. Just outside the event horizon there will be virtual pairs of particles, one with negative energy and one with positive energy. The negative particle is in a region which is classically forbidden but it can tunnel through the event horizon to the region inside the black hole where the Killing vector which represents time translations is spacelike. In this region the particle can exist as a real particle with a timelike momentum vector even though its energy relative to infinity as measured by the time translation Killing vector is negative. The other particle of the pair, having a positive energy, can escape to infinity where it constitutes a part of the thermal emission described above. The probability of the negative energy particle tunnelling through the horizon is governed by the surface gravity K since this quantity measures the gradient of the magnitude of the Killing vector or, in other words, how fast the Killing vector is becoming spacelike. Instead of thinking of negative energy particles tunnelling through the horizon in the positive sense of time one could regard them as positive energy particles crossing the horizon on pastdirected world-lines and then being scattered on to future-directed world-lines by the gravitational field. It should be emphasized that these pictures of the mechanism responsible for the thermal emission and area decrease are heuristic only and should not be taken too literally. It should not be thought unreasonable that a black hole, which is an excited state of the gravitational field, should decay quantum mechanically and that, because of quantum fluctuation of the metric, energy should be able to tunnel out of the potential well of a black hole. This particle creation is directly analogous to that caused by a deep potential well in flat space-time [18]. The real justification of the thermal emission is the mathematical derivation given in Section (2) for the case of an uncharged non-rotating black hole. The effects of angular momentum and charge are considered in Section (3). In Section (4) it is shown that any renormalization of the energymomentum tensor with suitable properties must give a negative energy flow down the black hole and consequent decrease in the area of the event horizon.This negative energy flow is non-observable locally.