The Naked Scientists
  • Login
  • Register
  • Podcasts
      • The Naked Scientists
      • eLife
      • Naked Genetics
      • Naked Astronomy
      • In short
      • Naked Neuroscience
      • Ask! The Naked Scientists
      • Question of the Week
      • Archive
      • Video
      • SUBSCRIBE to our Podcasts
  • Articles
      • Science News
      • Features
      • Interviews
      • Answers to Science Questions
  • Get Naked
      • Donate
      • Do an Experiment
      • Science Forum
      • Ask a Question
  • About
      • Meet the team
      • Our Sponsors
      • Site Map
      • Contact us

User menu

  • Login
  • Register
  • Home
  • Help
  • Search
  • Tags
  • Member Map
  • Recent Topics
  • Login
  • Register
  1. Naked Science Forum
  2. Non Life Sciences
  3. Physics, Astronomy & Cosmology
  4. How much stronger are electromagnetic fields compared with gravitational fields?
« previous next »
  • Print
Pages: [1] 2   Go Down

How much stronger are electromagnetic fields compared with gravitational fields?

  • 20 Replies
  • 7610 Views
  • 1 Tags

0 Members and 1 Guest are viewing this topic.

Offline jeffreyH (OP)

  • Global Moderator
  • Naked Science Forum King!
  • ********
  • 6807
  • Activity:
    0%
  • Thanked: 174 times
  • The graviton sucks
    • View Profile
How much stronger are electromagnetic fields compared with gravitational fields?
« on: 15/12/2015 18:12:05 »
I can't remember off hand what the order of magnitude difference is between the strength of the electromagnetic and gravitational fields. I have just done some calculations and need to cross check the results. I think I have found the speed of gravity.
« Last Edit: 15/12/2015 20:46:05 by chris »
Logged
Even the most obstinately ignorant cannot avoid learning when in an environment that educates.
 



Online evan_au

  • Global Moderator
  • Naked Science Forum GOD!
  • ********
  • 9204
  • Activity:
    72.5%
  • Thanked: 924 times
    • View Profile
Re: How many orders of magnitude?
« Reply #1 on: 15/12/2015 20:10:32 »
Quote
what is the order of magnitude difference between the strength of the electromagnetic and gravitational fields?
About 1038.
See: http://scienceworld.wolfram.com/physics/FundamentalForces.html

Quote
I think I have found the speed of gravity.
Gravitons are mostly assumed to have a rest mass of zero, but this has not been confirmed by experiment, at this time.
If the rest mass is zero (like the photon), gravity will travel at the speed of light; if it is non-zero (like the neutrino), gravity will travel slower than the speed of light. So the speed of gravity is also currently uncertain.

Some theories suggest that a small rest-mass for the graviton might account for the symptoms attributed to Dark Matter.
See: http://en.wikipedia.org/wiki/Graviton#Experimental_observation
Logged
 

Offline jeffreyH (OP)

  • Global Moderator
  • Naked Science Forum King!
  • ********
  • 6807
  • Activity:
    0%
  • Thanked: 174 times
  • The graviton sucks
    • View Profile
Re: How much stronger are electromagnetic fields compared with gravitational fields?
« Reply #2 on: 15/12/2015 22:07:48 »
Well I have a problem as the wavelengths would exceed those of the relic background from the big bang. This can't be possible but it appears to be the only way to have the speed of gravity equal to c. This has got to be completely wrong.
Logged
Even the most obstinately ignorant cannot avoid learning when in an environment that educates.
 

Offline jeffreyH (OP)

  • Global Moderator
  • Naked Science Forum King!
  • ********
  • 6807
  • Activity:
    0%
  • Thanked: 174 times
  • The graviton sucks
    • View Profile
Re: How much stronger are electromagnetic fields compared with gravitational fields?
« Reply #3 on: 17/12/2015 21:02:39 »
For photon energy the relationship is d40fc51c867809f9633affc556fca14e.gif or c7514421c9e67982179e1cfc80c18b99.gif. Since the difference in magnitude is 1038 between the electromagnetic and gravitational forces then 87f4b53428746dade0548689237b0c6a.gif or 74ababb6847bb4d22f7fe27f4f472b95.gif. So that the increase in wavelength and the associated drop in frequency are the only considerations required to determine the speed of gravity if the graviton is massless. What I haven't done is then calculate the required wavelengths of gravitation using the photon spectrum as a reference. My previous attempt was obviously wrong. I may get round to doing this at the weekend. I have a feeling this will also be wrong.
Logged
Even the most obstinately ignorant cannot avoid learning when in an environment that educates.
 

Offline jeffreyH (OP)

  • Global Moderator
  • Naked Science Forum King!
  • ********
  • 6807
  • Activity:
    0%
  • Thanked: 174 times
  • The graviton sucks
    • View Profile
Re: How much stronger are electromagnetic fields compared with gravitational fields?
« Reply #4 on: 17/12/2015 21:32:00 »
Well I couldn't wait it was driving me nuts. So using this relationship the SHORTEST gravitational wavelength actually starts at the longest relic background wavelength and ends up being much longer. So something is amiss here. The waves can't exist in this universe if they are in any way related proportionally to electromagnetism. They are basically outside our range of observation. The only way there appears to be to resolve this is by applying a factor to c so that the speed of light changes. Since this is a constant that makes little sense unless gravity is actually FASTER than c. I don't buy that since it would have to be MUCH faster than c. I can see why we get to the concept of a multiverse.
Logged
Even the most obstinately ignorant cannot avoid learning when in an environment that educates.
 



Offline acsinuk

  • Sr. Member
  • ****
  • 432
  • Activity:
    5%
  • Thanked: 6 times
    • View Profile
    • electricmagnofluxuniverse.blogspot.com
Re: How much stronger are electromagnetic fields compared with gravitational fields?
« Reply #5 on: 18/12/2015 10:13:44 »
If you assume the galaxies are magnetised and the WMAP results are correct with 85% of dark force missing then repelling force driving the stars apart is equivalent to 12G then the answer is 13G as you have to overcome mass attraction force of 1G as well.
Logged
A.C.Stevens
 

Online evan_au

  • Global Moderator
  • Naked Science Forum GOD!
  • ********
  • 9204
  • Activity:
    72.5%
  • Thanked: 924 times
    • View Profile
Re: How much stronger are electromagnetic fields compared with gravitational fields?
« Reply #6 on: 19/12/2015 00:28:06 »
Quote from: JeffreyH
The (gravitational) waves can't exist in this universe if they are in any way related proportionally to electromagnetism.
As I understand it, gravitational waves are not related proportionally to electromagnetic waves.

The strength of gravitational waves is related to the mass and acceleration of the objects producing the gravitational wave.

The strength of electromagnetic waves is related to the charge and acceleration of the objects producing the electromagnetic wave.

It is possible to have intense gravitational waves produced by merging galactic-center black holes. But since they will have almost zero charge, they will emit almost no electromagnetic waves. 

It is possible to have intense electromagnetic waves produced by an electron dropping into an inner orbital (eg in an X-Ray machine). But since the electron and target atom have almost zero mass, they will emit almost no gravitational waves.

So electromagnetic and gravitational waves involve different fields, and they are not proportional to each other.
Logged
 

Offline puppypower

  • Naked Science Forum King!
  • ******
  • 1369
  • Activity:
    17.5%
  • Thanked: 98 times
    • View Profile
Re: How much stronger are electromagnetic fields compared with gravitational fields?
« Reply #7 on: 19/12/2015 12:34:57 »
When forces like the strong and weak nuclear forces and the EM force lower potential, they give off energy; photon. Since gravity is also a force; weight, what type of energy wave/particle does gravity give off when it lowers potential?

Is it possible that the exothermic output waves from gravity, cancels the gravitational attractive waves, so we see neither?

As an analogy, the exothermic out from the EM force; electron lowering potential, can be used to reverse the EM force elsewhere by the exact same amount; ionization energy. If we apply this balancing action-reaction to gravity, its output, since it can reverse gravity elsewhere, will act like anti-gravity and therefore appear to offset the gravitational energy output; cancel. In the end it appear like nothing net has happened.

If we try to measure gravity or the reverse gravity output on earth, since all so many mass particles are interacting it becomes hard to differentiate either. The output due to gravity may be the source of dark energy, while dark matter may be example of gravity waves, where both remain uncanceled   
Logged
 

Offline puppypower

  • Naked Science Forum King!
  • ******
  • 1369
  • Activity:
    17.5%
  • Thanked: 98 times
    • View Profile
Re: How much stronger are electromagnetic fields compared with gravitational fields?
« Reply #8 on: 19/12/2015 13:28:05 »
If we take 2 masses M at a distance D, and reduce the distance to 1/2D the gravitational potential goes down. Based on GR, this causes local  space-time to contract, such that energy becomes blue shifted. The blue shifted energy is where the exothermic output due to gravity will go; conservation of energy. There is a conversion from gravity to all the other force photons; blue shift.

Where the confusion lies is we use an abstraction called space-time, as a middleman, where space is the void between things and time is not a thing or potential. This mental filter causes a mental aberration. If instead we restrict ourselves to just tangible things, such as mass and energy, the lowering of gravitational potential results in a blue shift of energy in the region of the gravity change, resulting in more potent photons. The energy is balanced. 

Don't get me wrong, space-time is useful because it allows us to integrate a range of things and therefore has practical utility in terms of simplifying calculations. But it appears to make the energy balance harder to see since this becomes part of a more complex integration that shifts the mind elsewhere.

Logged
 



Offline jeffreyH (OP)

  • Global Moderator
  • Naked Science Forum King!
  • ********
  • 6807
  • Activity:
    0%
  • Thanked: 174 times
  • The graviton sucks
    • View Profile
Re: How much stronger are electromagnetic fields compared with gravitational fields?
« Reply #9 on: 19/12/2015 18:10:00 »
Quote from: evan_au on 19/12/2015 00:28:06
Quote from: JeffreyH
The (gravitational) waves can't exist in this universe if they are in any way related proportionally to electromagnetism.
As I understand it, gravitational waves are not related proportionally to electromagnetic waves.

The strength of gravitational waves is related to the mass and acceleration of the objects producing the gravitational wave.

The strength of electromagnetic waves is related to the charge and acceleration of the objects producing the electromagnetic wave.

It is possible to have intense gravitational waves produced by merging galactic-center black holes. But since they will have almost zero charge, they will emit almost no electromagnetic waves. 

It is possible to have intense electromagnetic waves produced by an electron dropping into an inner orbital (eg in an X-Ray machine). But since the electron and target atom have almost zero mass, they will emit almost no gravitational waves.

So electromagnetic and gravitational waves involve different fields, and they are not proportional to each other.

The issue isn't really the proportionality but the speed of propagation. The quantum of action doesn't fit well in an energy equation for gravitation. Not if the speed of gravity is equal to c. To actually get an energy equivalence (real or not) between the electromagnetic and gravitational fields the electromagnetic field has to be ultra red shifted and the gravitational field ultra blue shifted. However, using h pushes the gravitational wave spectrum way out of accepted values. The range shifts into a much longer wavelength spectrum. Something fundamental is missing. Probably staring everyone right in the face. It is something I am thinking about quite a lot at the moment and know that the answer is right in front of me.
Logged
Even the most obstinately ignorant cannot avoid learning when in an environment that educates.
 

Online evan_au

  • Global Moderator
  • Naked Science Forum GOD!
  • ********
  • 9204
  • Activity:
    72.5%
  • Thanked: 924 times
    • View Profile
Re: How much stronger are electromagnetic fields compared with gravitational fields?
« Reply #10 on: 19/12/2015 20:39:50 »
Quote from: puppypower
what type of energy wave/particle does gravity give off when it lowers potential?
It is a hypothetical particle called the graviton.

Physicists have expectations about what it's properties should be, but they have never detected one. Physicists can see no way that we could detect an individual graviton with our current technologies, because their energy is so low.

This may be the answer to Jeffrey's problem - perhaps the relationship of energy to frequency is not Plank's constant, when it comes to gravity? Gravity is a different field, so it may have a different constant.

However, experiments like Enhanced LIGO are looking for coherent waves of gravitons, and these should be possible to detect someday.
« Last Edit: 19/12/2015 20:43:37 by evan_au »
Logged
 

Offline jeffreyH (OP)

  • Global Moderator
  • Naked Science Forum King!
  • ********
  • 6807
  • Activity:
    0%
  • Thanked: 174 times
  • The graviton sucks
    • View Profile
Re: How much stronger are electromagnetic fields compared with gravitational fields?
« Reply #11 on: 20/12/2015 13:35:34 »
Strangely it appears to be that as the universe evolves the gravitational wave spectrum changes. It looks as though the force of gravity is gaining strength. Although this would be an imperceptible change to detect. It looks like something is distorting the spectrum. Dark matter? Dark energy?

EDIT: This may be the wrong way round and the strength of gravity may be decreasing as the universe evolves.
« Last Edit: 20/12/2015 22:53:51 by jeffreyH »
Logged
Even the most obstinately ignorant cannot avoid learning when in an environment that educates.
 

Offline jeffreyH (OP)

  • Global Moderator
  • Naked Science Forum King!
  • ********
  • 6807
  • Activity:
    0%
  • Thanked: 174 times
  • The graviton sucks
    • View Profile
Re: How much stronger are electromagnetic fields compared with gravitational fields?
« Reply #12 on: 20/12/2015 14:06:58 »
If Planck's constant plays no role in determining the energy of the gravitational field then this brings into question it's role in determining the gravitational constant and therefore all the Planck dimensions.
Logged
Even the most obstinately ignorant cannot avoid learning when in an environment that educates.
 



Offline jeffreyH (OP)

  • Global Moderator
  • Naked Science Forum King!
  • ********
  • 6807
  • Activity:
    0%
  • Thanked: 174 times
  • The graviton sucks
    • View Profile
Re: How much stronger are electromagnetic fields compared with gravitational fields?
« Reply #13 on: 20/12/2015 18:31:14 »
The situation cannot be resolved by introducing the gravitational coupling constant.

https://en.wikipedia.org/wiki/Gravitational_coupling_constant

Since there is an inverse relationship between the ranges of the electromagnetic and gravitational spectra. It is as if the energy of the gravitational field varies on a coordinate basis that is unrelated to the coordinate speed of light. This also suggests a speed for gravity that does not equal c but is greater than c. I can find no way round this conclusion.
Logged
Even the most obstinately ignorant cannot avoid learning when in an environment that educates.
 

Offline jeffreyH (OP)

  • Global Moderator
  • Naked Science Forum King!
  • ********
  • 6807
  • Activity:
    0%
  • Thanked: 174 times
  • The graviton sucks
    • View Profile
Re: How much stronger are electromagnetic fields compared with gravitational fields?
« Reply #14 on: 20/12/2015 19:05:30 »
If we take values for lambdai, where i = 0 to 3, and have lambda_0 and lambda_1 define the shortest to the longest electromagnetic wavelength and lambda_2 to lambda_3 do the same for the gravitational wavelengths then values for alpha and beta can be defined as follows.

4d43fdbfe26346eb5c8de5802bfd7458.gif

d234cd988656306cc6e94f55a073217d.gif

It can be shown that the correct values for the energy of the lowest and highest gravitational waves can be given by:

131695d0bbaee436c60274e8761fa32e.gif

c88d000f3d8dd3f1064401a9210cc29c.gif

I will make no attempt to explain why this relationship exists as I don't even know if it is correct.
« Last Edit: 20/12/2015 19:09:50 by jeffreyH »
Logged
Even the most obstinately ignorant cannot avoid learning when in an environment that educates.
 

Offline acsinuk

  • Sr. Member
  • ****
  • 432
  • Activity:
    5%
  • Thanked: 6 times
    • View Profile
    • electricmagnofluxuniverse.blogspot.com
Re: How much stronger are electromagnetic fields compared with gravitational fields?
« Reply #15 on: 21/12/2015 11:44:28 »
Could it be that gravity is a short range force only? So it only effects matter or gas molecules that casimir touch together but in space it is only the electrostatic dark energy charge force and electromagnetic dark matter spin forces that apply. 
« Last Edit: 21/12/2015 11:47:11 by acsinuk »
Logged
A.C.Stevens
 

Offline jeffreyH (OP)

  • Global Moderator
  • Naked Science Forum King!
  • ********
  • 6807
  • Activity:
    0%
  • Thanked: 174 times
  • The graviton sucks
    • View Profile
Re: How much stronger are electromagnetic fields compared with gravitational fields?
« Reply #16 on: 21/12/2015 13:21:41 »
No. It appears that something is dampening the strength of the gravitational field. More at the shorter wavelengths than the longer ones. This has to relate to the electromagnetic field and maybe other fields too. It is puzzling. I am very unsure of these results so examine them with caution.
Logged
Even the most obstinately ignorant cannot avoid learning when in an environment that educates.
 



Offline jeffreyH (OP)

  • Global Moderator
  • Naked Science Forum King!
  • ********
  • 6807
  • Activity:
    0%
  • Thanked: 174 times
  • The graviton sucks
    • View Profile
Re: How much stronger are electromagnetic fields compared with gravitational fields?
« Reply #17 on: 26/12/2015 13:45:16 »
This change, or stretching, of the gravitational field has to be a consequence of the expansion of the universe. I am unsure at the moment if this will make it easier or harder to detect gravitational waves.
Logged
Even the most obstinately ignorant cannot avoid learning when in an environment that educates.
 

Online evan_au

  • Global Moderator
  • Naked Science Forum GOD!
  • ********
  • 9204
  • Activity:
    72.5%
  • Thanked: 924 times
    • View Profile
Re: How much stronger are electromagnetic fields compared with gravitational fields?
« Reply #18 on: 27/12/2015 02:36:40 »
Quote
dampening the strength of the gravitational field. ... This has to relate to the electromagnetic field and maybe other fields too.

The photon is a spin=1 particle, and travels as a disturbance of the electromagnetic field.
The (hypothetical) graviton is a spin=2 particle, and travels as a disturbance of the (known) gravitational field*.

Why must gravity be affected by the electromagnetic field?

*Apparently, the graviton is one of the few successes of string theory; it is very easy for string theory to produce a spin=2 graviton. It's just reproducing the known parts of physics that is proving difficult!
Logged
 

Offline jeffreyH (OP)

  • Global Moderator
  • Naked Science Forum King!
  • ********
  • 6807
  • Activity:
    0%
  • Thanked: 174 times
  • The graviton sucks
    • View Profile
Re: How much stronger are electromagnetic fields compared with gravitational fields?
« Reply #19 on: 27/12/2015 21:26:33 »
I didn't say that the electromagnetic field affected the gravitational field. Only that there was some connection between the two fields related to the effect. If you read my subsequent post the apparent change in energy may simply be a consequence of the expansion of the universe. This would place dark energy as the culprit in any change in the gravitational field. As the effects of dark energy are thought to be a repulsive force this would not be surprising. It may also be changing the profile of other fields too but not proportionally.
Logged
Even the most obstinately ignorant cannot avoid learning when in an environment that educates.
 



  • Print
Pages: [1] 2   Go Up
« previous next »
Tags: em-based alcubiere drive ? 
 

Similar topics (5)

gravitational mass vs. rest mass

Started by flrBoard Physics, Astronomy & Cosmology

Replies: 3
Views: 3176
Last post 06/04/2013 20:40:59
by Pmb
Can you "ride" a gravitational wave?

Started by cowlinatorBoard Physics, Astronomy & Cosmology

Replies: 21
Views: 8061
Last post 06/11/2018 15:45:29
by Professor Mega-Mind
Do gravitational waves propagate faster than light waves?

Started by williampcochranBoard Physics, Astronomy & Cosmology

Replies: 83
Views: 30969
Last post 12/01/2011 02:02:01
by JP
Why don't Gravitational Waves follow the "Inverse Square Law"?

Started by evan_auBoard Physics, Astronomy & Cosmology

Replies: 7
Views: 6823
Last post 07/02/2017 22:32:33
by Bored chemist
How does the "Laser Interferometer Gravitational wave Observatory" (LIGO) work?

Started by teragramBoard Physics, Astronomy & Cosmology

Replies: 19
Views: 15567
Last post 20/04/2009 13:45:45
by Vern
There was an error while thanking
Thanking...
  • SMF 2.0.15 | SMF © 2017, Simple Machines
    Privacy Policy
    SMFAds for Free Forums
  • Naked Science Forum ©

Page created in 0.217 seconds with 79 queries.

  • Podcasts
  • Articles
  • Get Naked
  • About
  • Contact us
  • Advertise
  • Privacy Policy
  • Subscribe to newsletter
  • We love feedback

Follow us

cambridge_logo_footer.png

©The Naked Scientists® 2000–2017 | The Naked Scientists® and Naked Science® are registered trademarks created by Dr Chris Smith. Information presented on this website is the opinion of the individual contributors and does not reflect the general views of the administrators, editors, moderators, sponsors, Cambridge University or the public at large.