The Naked Scientists
  • Login
  • Register
  • Podcasts
      • The Naked Scientists
      • eLife
      • Naked Genetics
      • Naked Astronomy
      • In short
      • Naked Neuroscience
      • Ask! The Naked Scientists
      • Question of the Week
      • Archive
      • Video
      • SUBSCRIBE to our Podcasts
  • Articles
      • Science News
      • Features
      • Interviews
      • Answers to Science Questions
  • Get Naked
      • Donate
      • Do an Experiment
      • Science Forum
      • Ask a Question
  • About
      • Meet the team
      • Our Sponsors
      • Site Map
      • Contact us

User menu

  • Login
  • Register
  • Home
  • Help
  • Search
  • Tags
  • Member Map
  • Recent Topics
  • Login
  • Register
  1. Naked Science Forum
  2. On the Lighter Side
  3. New Theories
  4. An analysis of the de Broglie equation
« previous next »
  • Print
Pages: 1 [2] 3 4 ... 37   Go Down

An analysis of the de Broglie equation

  • 724 Replies
  • 80111 Views
  • 0 Tags

0 Members and 1 Guest are viewing this topic.

Offline jeffreyH (OP)

  • Global Moderator
  • Naked Science Forum King!
  • ********
  • 6807
  • Activity:
    0%
  • Thanked: 174 times
  • The graviton sucks
    • View Profile
Re: An analysis of the de Broglie equation
« Reply #20 on: 25/05/2016 11:02:11 »
Technically relativistic mass is akin to the sum of all the energies. As we apply forces to speed things up it becomes harder as relativistic mass increases. For gravity this seems not to be an issue. Density as well as mass MUST have an effect on gravity's ability to accelerate objects otherwise there can be no boson for the gravitational field. You need to think about that one very carefully to understand.
Logged
Even the most obstinately ignorant cannot avoid learning when in an environment that educates.
 



Offline timey

  • Naked Science Forum King!
  • ******
  • 2439
  • Activity:
    0%
  • Thanked: 26 times
  • Self educated since age 11 at "University of Life"
    • View Profile
Re: An analysis of the de Broglie equation
« Reply #21 on: 25/05/2016 13:03:01 »
Quote from: jeffreyH on 25/05/2016 11:02:11
Technically relativistic mass is akin to the sum of all the energies.

So - presumably if we take our caesium atomic clock and accelerate it up to relativistic speeds in a uniform gravitational field, the additional kinetic energy will increase the frequency of cycles? 

...this cannot be correct because an increase in the frequency of cycles of a caesium atomic clock would of course register an 'increase' in the rate of the clocks time, and not the decrease in rate of time that is observed of an accelerated clock...

I found this and thought it might interest you Jeff:

http://web.mit.edu/lululiu/Public/pixx/not-pixx/photoelectric.pdf
Logged
Particles are very helpful, they lend themselves to everything...
 

Offline jeffreyH (OP)

  • Global Moderator
  • Naked Science Forum King!
  • ********
  • 6807
  • Activity:
    0%
  • Thanked: 174 times
  • The graviton sucks
    • View Profile
Re: An analysis of the de Broglie equation
« Reply #22 on: 25/05/2016 19:54:17 »
Quote from: timey on 25/05/2016 13:03:01
Quote from: jeffreyH on 25/05/2016 11:02:11
Technically relativistic mass is akin to the sum of all the energies.

So - presumably if we take our caesium atomic clock and accelerate it up to relativistic speeds in a uniform gravitational field, the additional kinetic energy will increase the frequency of cycles? 

...this cannot be correct because an increase in the frequency of cycles of a caesium atomic clock would of course register an 'increase' in the rate of the clocks time, and not the decrease in rate of time that is observed of an accelerated clock...

I found this and thought it might interest you Jeff:

http://web.mit.edu/lululiu/Public/pixx/not-pixx/photoelectric.pdf

Thanks for the pdf. I skimmed through it but didn't take much in. I can't answer your questions above as I do not have the knowledge to do so. I was reading up on particle physics a while back but stopped just before being admitted to hospital. I haven't done much reading since. I have variable days at the moment.
Logged
Even the most obstinately ignorant cannot avoid learning when in an environment that educates.
 

Offline jeffreyH (OP)

  • Global Moderator
  • Naked Science Forum King!
  • ********
  • 6807
  • Activity:
    0%
  • Thanked: 174 times
  • The graviton sucks
    • View Profile
Re: An analysis of the de Broglie equation
« Reply #23 on: 25/05/2016 23:41:47 »
I have read the pdf. It reiterates what was originally done to find Planck's constant I believe. The linear plot is the most fascinating element. Once you can determine that direct a relationship you know you are on to something.
Logged
Even the most obstinately ignorant cannot avoid learning when in an environment that educates.
 

Offline timey

  • Naked Science Forum King!
  • ******
  • 2439
  • Activity:
    0%
  • Thanked: 26 times
  • Self educated since age 11 at "University of Life"
    • View Profile
Re: An analysis of the de Broglie equation
« Reply #24 on: 26/05/2016 12:24:51 »
Jeff - I remember you saying that you'd been in hospital last year.  A problem with breathing if I recall correctly.  Sorry to hear that you are not fully recovered.

Your welcome for the PDF.  Planck derived his constant via the black body experiment which used thermal equilibrium and the resulting light emissions.  These MIT undergraduates are testing the constant via the photoelectric effect.

Although the error bar was not within acceptable scientific range, I thought you might find the potential linearity aspect interesting.  What I found interesting was the fact that they showed that the cut off point was correlating with the energy associated with frequency, and not kinetic energy.

The question I asked concerning accelerating a caesium atomic clock to relativistic speeds in a uniform gravitational field, and if the resulting rise in kinetic energy would increase the frequency of cycles of the caesium atom, which of course would be incorrect, because this would register an increase in the rate of time and not the decrease in rate of time observed of an accelerated clock:
I'm almost 100% certain (subject to being wrong ;) ) that there isn't 'anyone' who can answer this question Jeff, but I hereby challenge 'all' the experts and moderators on this forum to try!
Logged
Particles are very helpful, they lend themselves to everything...
 



Offline timey

  • Naked Science Forum King!
  • ******
  • 2439
  • Activity:
    0%
  • Thanked: 26 times
  • Self educated since age 11 at "University of Life"
    • View Profile
Re: An analysis of the de Broglie equation
« Reply #25 on: 26/05/2016 17:54:19 »
Also Jeff - I know you said you are not reading much at mo, and this one is a bit of a longer read at a grand total of 38 pages, but if you get a chance it's a good read up till the last few pages.

http://em01.powweb.com/sciencetoday/planckunits/planck_unit.pdf

The long and short of this one is that there are 2 derivable values for square root.  Most of the Planck values are derived using one means, but a couple are using the alternate means.

I'm a bit fuzzy on the legitimacy of this claim of there being 2 means of deriving a value from square root, so if this does take your interest and you have an opinion, I'd be grateful to know it...
Logged
Particles are very helpful, they lend themselves to everything...
 

Offline jeffreyH (OP)

  • Global Moderator
  • Naked Science Forum King!
  • ********
  • 6807
  • Activity:
    0%
  • Thanked: 174 times
  • The graviton sucks
    • View Profile
Re: An analysis of the de Broglie equation
« Reply #26 on: 26/05/2016 19:08:54 »
It didn't make much sense. I could understand if it was talking about positive and negative results from a square root. I would ignore it if I were you.
Logged
Even the most obstinately ignorant cannot avoid learning when in an environment that educates.
 

Offline timey

  • Naked Science Forum King!
  • ******
  • 2439
  • Activity:
    0%
  • Thanked: 26 times
  • Self educated since age 11 at "University of Life"
    • View Profile
Re: An analysis of the de Broglie equation
« Reply #27 on: 26/05/2016 20:51:57 »
I think he is talking about the square root of the speed of light, and that if you move the decimal point to portray the speed of light in kilometres, instead of metres, a different value emerges via square root when calculating meters than with kilometres, despite the fact that the actual distance is the same. (I haven't checked to see if this is true, but I doubt someone would write 38 pages based on this sole premiss if the premiss for the calculation was not correct.)

He goes on to show that Planck's charge constant has been calculated using the position of the decimal point of the speed of light contrary to the position the decimal point has been used to calculate the majority of the other related constants.

If you go to page 9 you will see a table of what the Planck constants values are when worked out by the means of both positions of the decimal point.
This table may well be quite interesting when related back to the data the MIT undergraduates were recording in the link I previously posted...
Logged
Particles are very helpful, they lend themselves to everything...
 

Offline alancalverd

  • Global Moderator
  • Naked Science Forum GOD!
  • ********
  • 10912
  • Activity:
    100%
  • Thanked: 632 times
  • life is too short to drink instant coffee
    • View Profile
Re: An analysis of the de Broglie equation
« Reply #28 on: 26/05/2016 22:46:34 »
Quote from: timey on 25/05/2016 04:52:29
A particle with mass's energy and frequency increases in a decreasing gravitational field.

A massless photon's energy and frequency decreases in a decreasing gravitational field.

I think what you mean by the second statement is that the frequency of a photon originating in a stronger gravitational field and  seen by an observer in a weaker gravitational field is lower than that of a photon emitted by the same process in the lower field. 

But the first statement baffles me. The kinetic energy of any massive particle increases as it enters a stronger gravitational field (stuff accelerates at g as it falls, and g is bigger as you get closer to the earth )  therefore it must decrease as it leaves the stronger field (what goes up generally stops and then comes down). It's the essential difference between a projectile and a rocket. Now if you want to associate a deBroglie wavelength with kinetic energy, it must behave in exactly the same way as a photon wavelength.
Logged
helping to stem the tide of ignorance
 



Offline alancalverd

  • Global Moderator
  • Naked Science Forum GOD!
  • ********
  • 10912
  • Activity:
    100%
  • Thanked: 632 times
  • life is too short to drink instant coffee
    • View Profile
Re: An analysis of the de Broglie equation
« Reply #29 on: 26/05/2016 23:13:07 »
Quote from: timey on 26/05/2016 12:24:51
The question I asked concerning accelerating a caesium atomic clock to relativistic speeds in a uniform gravitational field, and if the resulting rise in kinetic energy would increase the frequency of cycles of the caesium atom, which of course would be incorrect, because this would register an increase in the rate of time and not the decrease in rate of time observed of an accelerated clock:

If the source and observer are in the same uniform gravitational field, the only effect will be due to their relative motion

From Wikipedia (or any textbook)
Quote
When two observers are in relative uniform motion and uninfluenced by any gravitational mass, the point of view of each will be that the other's (moving) clock is ticking at a slower rate than the local clock. The faster the relative velocity, the greater the magnitude of time dilation. This case is sometimes called special relativistic time dilation.

which is what we observe with flying clocks and clocks in a low earth orbit.


Quote
if the resulting rise in kinetic energy would increase the frequency of cycles of the caesium atom
That's a big "if" and has no foundation. Once the clock is moving at a constant speed, it has no idea that it is moving except in relation to another clock, so there's no reason why its atoms should behave any differently from when it was "stationary".

And I'm afraid the "Planck unit" paper has all the hallmarks of a crank. The discovery that 
√100 ≠ 10√10 should not surprise anyone over the age of 12.

It would be really bitchy and nitpicky for me to point out the glaring omissions from the MIT students' paper, so I'll leave that to others. Suffice it to say that when I was teaching this experiment to undergraduates 50 years ago, they would not have been let off without a stern warning! 
« Last Edit: 26/05/2016 23:23:25 by alancalverd »
Logged
helping to stem the tide of ignorance
 

Offline timey

  • Naked Science Forum King!
  • ******
  • 2439
  • Activity:
    0%
  • Thanked: 26 times
  • Self educated since age 11 at "University of Life"
    • View Profile
Re: An analysis of the de Broglie equation
« Reply #30 on: 27/05/2016 00:27:47 »
A caesium atomic clocks frequency increases in a decreasing gravitational field relative to a clock at ground level.  No kinetic energy involved when the 2 clocks are held stationary relative to each other. ie: 1 meter apart in elevation for instance.
(See NIST 2010 ground level relativity tests)
Any particle with mass held 1 meter higher in elevation from another identical particle will therefore have a higher frequency than the lower particle...no?

A photon's frequency decreases travelling into a decreasing gravitational field.  It is doing so whether anyone observes it or not.

The only difference between the 2 scenarios apart from the photon having no mass is the fact of its velocity, (whereas I have held the particles with mass, discussed previously, stationary relative to each other and the gravitational field.).

You are giving the photon relativistic mass via kinetic energy to calculate g and stating the rate of time as being slowed by the relativistic speed and mass.

But these concepts don't tally up logistically when you take your caesium atomic clock, and accelerating it to relativistic speeds in a uniform gravitational field, ask yourself will the clocks frequency increase as its energy increases?  Because this would of course register an increase in the clocks rate of time which cannot be correct, because an accelerated clock's rate of time is observed to slow...

Alan, in reply to your second post, whenever I have made any reference to a change in the rate of time, please know that this is relative to a stationary caesium atomic clock at ground level registering the frequency associated with the 'standard second'.

With regards to the rest of your post, be bitchy if that's what you enjoy.  I had indeed thought that this was not the alancalverd way, (sad sigh), but go ahead, 'tis a free country...
Logged
Particles are very helpful, they lend themselves to everything...
 

Offline timey

  • Naked Science Forum King!
  • ******
  • 2439
  • Activity:
    0%
  • Thanked: 26 times
  • Self educated since age 11 at "University of Life"
    • View Profile
Re: An analysis of the de Broglie equation
« Reply #31 on: 27/05/2016 02:29:04 »
Quote from: alancalverd on 26/05/2016 23:13:07
Quote
 if the resulting rise in kinetic energy would increase the frequency of cycles of the caesium atom
That's a big "if" and has no foundation. Once the clock is moving at a constant speed, it has no idea that it is moving except in relation to another clock, so there's no reason why its atoms should behave any differently from when it was "stationary".

Huh? ...If a ceasium atomic clock registers a faster or slower rate of time, then it's energy and frequency are changing...

The point being Alan, that accelerating the caesium atomic clock to relativistic speeds in a uniform gravitational field will add relativistic mass via kinetic energy, which will increase the particles energy e=mc2, and its frequency will increase, and that atomic clock will register an increase in its rate of time relative to an identical stationary clock registering a standard second, which is not what is observed.  An accelerated caesium atomic clock's rate of time will decrease relative to a stationary clock, and this very much involves the accelerated clocks frequency, and therefore it's energy decreasing, relative to the stationary clock.

Turn this concept vertically into a decreasing gravitation field whereby the caesium atomic clocks energy and frequency already increases in the decreasing gravitational field, and the kinetic energy and therefore the additional relativistic mass is still adding energy via e=mc2.  The faster it travels the more energy it has, it's frequency and therefore the rate of time the clock is registering will get even faster, not slower. (I'm pretty sure my logic is sound)

Special relativity states a slowing of time at speed relative to the stationary, and this is observed, but the logic of relativistic mass falls apart when looking at how the frequency of cycles of a caesium atomic clock is energy dependent.

And... why would a gravitational field affect a photon given relativistic mass in a contrary direction to how it affects any other particle?
Logged
Particles are very helpful, they lend themselves to everything...
 

Offline alancalverd

  • Global Moderator
  • Naked Science Forum GOD!
  • ********
  • 10912
  • Activity:
    100%
  • Thanked: 632 times
  • life is too short to drink instant coffee
    • View Profile
Re: An analysis of the de Broglie equation
« Reply #32 on: 27/05/2016 09:38:58 »
Quote from: timey on 27/05/2016 02:29:04
Huh? ...If a ceasium atomic clock registers a faster or slower rate of time, then it's energy and frequency are changing...
No it won't "register" a different time. As far as the observer next to the clock is concerned, it is working perfectly. Gravitational shift and motion shift are only apparent to an observer in a different gravitational potential or moving with respect to the clock.

Quote
And... why would a gravitational field affect a photon given relativistic mass in a contrary direction to how it affects any other particle?
It doesn't, as I explained earlier. The kinetic energy of a particle increases as it accelerates towards a massive body (everyday gravitation), and the frequency of a photon increases as it travels towards a massive body (blue shift). According to Einstein, they are the same phenomenon. But what did he know, eh?

Quote
The only difference between the 2 scenarios apart from the photon having no mass is the fact of its velocity
That, in the words of the prophet, is one hell of a difference. See above.

Quote
A caesium atomic clocks frequency increases in a decreasing gravitational field relative to a clock at ground level.  No kinetic energy involved when the 2 clocks are held stationary relative to each other. ie: 1 meter apart in elevation for instance.
You have spotted the difference between gravitational shift and relative velocity shift. No dispute there.

Quote
Any particle with mass held 1 meter higher in elevation from another identical particle will therefore have a higher frequency than the lower particle...no?
What do you mean by the frequency of a particle?
Logged
helping to stem the tide of ignorance
 



Offline timey

  • Naked Science Forum King!
  • ******
  • 2439
  • Activity:
    0%
  • Thanked: 26 times
  • Self educated since age 11 at "University of Life"
    • View Profile
Re: An analysis of the de Broglie equation
« Reply #33 on: 27/05/2016 12:51:24 »
The De Broglie hypothesis gives all particles a wavelength, frequency and energy.

You say a particle's kinetic energy increases as it falls to earth:  looking at a caesium atom, if it is falling towards earth and its kinetic energy increases, it's mass increases with the additional energy via e=mc2 and its frequency will 'increase' as a result.  An increase in the frequency of cycles of a caesium atom 'is' an 'increase' in the rate of time.

There is nothing written above that is not true to accepted physics.

Yet the observed behaviour of a caesium atomic clock is that it will run at a slower rate relative to a standard second when accelerated, and will run at a slower rate relative the rate it runs at in the weaker gravitational field when exposed to an increase in gravitational field. (NIST 2010 ground level, non accelerated, relativity tests)

Therefore, all particles with mass's wavelength, according to NIST tests in relation to the De Broglie hypothesis, will increase, ie: lengthen, as their energy, and therefore their frequency reduces in an increasing gravitational field.

Lights wavelength decreases in an increasing gravitational field.

I don't think I can be any clearer, and repose my question:  Why is the photon's direction of change in wavelength the opposite to a particle with mass's direction of change in wavelength when exposed to changes in the gravitational field?
« Last Edit: 27/05/2016 12:54:49 by timey »
Logged
Particles are very helpful, they lend themselves to everything...
 

Offline alancalverd

  • Global Moderator
  • Naked Science Forum GOD!
  • ********
  • 10912
  • Activity:
    100%
  • Thanked: 632 times
  • life is too short to drink instant coffee
    • View Profile
Re: An analysis of the de Broglie equation
« Reply #34 on: 27/05/2016 13:16:11 »
Quote from: timey on 27/05/2016 12:51:24
You say a particle's kinetic energy increases as it falls to earth:  looking at a caesium atom, if it is falling towards earth and its kinetic energy increases, it's mass increases with the additional energy via e=mc2 and its frequency will 'increase' as a result.  An increase in the frequency of cycles of a caesium atom 'is' an 'increase' in the rate of time.
The misunderstanding is in the mechanism of the cesium clock. It has noting to do with the mass of the atom, only the energy difference in the hyperfine ground states of its electron cloud. This is unaffected by gravitation or movement.
Logged
helping to stem the tide of ignorance
 

Offline timey

  • Naked Science Forum King!
  • ******
  • 2439
  • Activity:
    0%
  • Thanked: 26 times
  • Self educated since age 11 at "University of Life"
    • View Profile
Re: An analysis of the de Broglie equation
« Reply #35 on: 27/05/2016 14:10:22 »
But a caesium atomic clock's frequency of cycles does change with changes in a gravitational field, and it does change when subject to motion relative to a stationary clock.  This caesium atomic clock's transitions from ground state and back is the method by which we record time and each change in the rate of time comes complete with a specific frequency in hertz.  If the frequency of those cycles increases, the rate of time is faster, and if the frequency of those cycles decreases, the rate of time is slower. 

For the frequency of cycles: ie waves per second, to increase - there must be an increase in energy.

An increase in energy, according to GR and e=mc2, includes an increase in mass...
Logged
Particles are very helpful, they lend themselves to everything...
 

Offline alancalverd

  • Global Moderator
  • Naked Science Forum GOD!
  • ********
  • 10912
  • Activity:
    100%
  • Thanked: 632 times
  • life is too short to drink instant coffee
    • View Profile
Re: An analysis of the de Broglie equation
« Reply #36 on: 27/05/2016 14:42:17 »
No it doesn't! From the point if view of an observer in the same field, the clock is working perfectly because the energy levels of the cesium ground state haven't changed. They are only dependent on the charge and mass of the electrons and protons, not on the ambient gravitational field. But the observer at a different gravitational potential sees the clock as running faster or slower because the field alters the curvature of spacetime.

Time is independent of how you measure it, but very dependent on where you measure it. 
Logged
helping to stem the tide of ignorance
 



Offline timey

  • Naked Science Forum King!
  • ******
  • 2439
  • Activity:
    0%
  • Thanked: 26 times
  • Self educated since age 11 at "University of Life"
    • View Profile
Re: An analysis of the de Broglie equation
« Reply #37 on: 27/05/2016 15:22:40 »
Well Alan - the reason the observer of the clock doesn't see any change in the atoms of the clock, when in in motion with the clock, or when in the same gravitational potential as the clock, is because the atoms that make up the physique of the observer are also affected as the clock is by the motion, or gravitational potential.  This is why astronauts who have been exposed to a faster rate of motion and a different gravity potential are reported to have aged more slowly.

http://www.techinsider.io/do-astronauts-age-slower-than-people-on-earth-2015-8
Logged
Particles are very helpful, they lend themselves to everything...
 

Offline alancalverd

  • Global Moderator
  • Naked Science Forum GOD!
  • ********
  • 10912
  • Activity:
    100%
  • Thanked: 632 times
  • life is too short to drink instant coffee
    • View Profile
Re: An analysis of the de Broglie equation
« Reply #38 on: 27/05/2016 17:03:28 »
A good article, including

Quote
That's because of time-dilation effects. First, time appears to move slower near massive objects because the object's gravitational force bends space-time....


....nothing about the atoms of the clock. Which is why the time dilation effect is exactly the same for all massless photons as it is for electron transitions in an atom, and for all clocks (including rubidium, which preceded cesium). Gravity affects time. And remember that  the frequency of a cesium clock has nothing to do with the mass of, or gravitational pull on, its atoms. It's an entirely quantum-mechanical function of the electron orbitals. If the actual frequency was affected by gravity, the perceived frequency would presumably depend on the chemical makeup of the observer, but it doesn't. 
« Last Edit: 27/05/2016 17:05:40 by alancalverd »
Logged
helping to stem the tide of ignorance
 

Offline jeffreyH (OP)

  • Global Moderator
  • Naked Science Forum King!
  • ********
  • 6807
  • Activity:
    0%
  • Thanked: 174 times
  • The graviton sucks
    • View Profile
Re: An analysis of the de Broglie equation
« Reply #39 on: 27/05/2016 17:59:47 »
Time is a measure of the rate of change of a system. Systems within distinct frames of reference may exhibit different rates of change when observations are made from a frame that is separated from the combined system. So that the remote observer records the rate of change of two atomic clocks as being different. You would never experience this within a frame local to a particular clock. This is the point which often confuses. All lab frames must appear 'normal'.
Logged
Even the most obstinately ignorant cannot avoid learning when in an environment that educates.
 



  • Print
Pages: 1 [2] 3 4 ... 37   Go Up
« previous next »
Tags:
 
There was an error while thanking
Thanking...
  • SMF 2.0.15 | SMF © 2017, Simple Machines
    Privacy Policy
    SMFAds for Free Forums
  • Naked Science Forum ©

Page created in 0.157 seconds with 77 queries.

  • Podcasts
  • Articles
  • Get Naked
  • About
  • Contact us
  • Advertise
  • Privacy Policy
  • Subscribe to newsletter
  • We love feedback

Follow us

cambridge_logo_footer.png

©The Naked Scientists® 2000–2017 | The Naked Scientists® and Naked Science® are registered trademarks created by Dr Chris Smith. Information presented on this website is the opinion of the individual contributors and does not reflect the general views of the administrators, editors, moderators, sponsors, Cambridge University or the public at large.