The Naked Scientists
  • Login
  • Register
  • Podcasts
      • The Naked Scientists
      • eLife
      • Naked Genetics
      • Naked Astronomy
      • In short
      • Naked Neuroscience
      • Ask! The Naked Scientists
      • Question of the Week
      • Archive
      • Video
      • SUBSCRIBE to our Podcasts
  • Articles
      • Science News
      • Features
      • Interviews
      • Answers to Science Questions
  • Get Naked
      • Donate
      • Do an Experiment
      • Science Forum
      • Ask a Question
  • About
      • Meet the team
      • Our Sponsors
      • Site Map
      • Contact us

User menu

  • Login
  • Register
  • Home
  • Help
  • Search
  • Tags
  • Recent Topics
  • Login
  • Register
  1. Naked Science Forum
  2. Non Life Sciences
  3. Physics, Astronomy & Cosmology
  4. How to choose random walk, diffusion? (local vs global entropy maximization)
« previous next »
  • Print
Pages: [1]   Go Down

How to choose random walk, diffusion? (local vs global entropy maximization)

  • 0 Replies
  • 7787 Views
  • 0 Tags

0 Members and 1 Guest are viewing this topic.

Offline Jarek Duda (OP)

  • Sr. Member
  • ****
  • 169
  • Activity:
    0%
  • Thanked: 1 times
    • http://th.if.uj.edu.pl/~dudaj/
How to choose random walk, diffusion? (local vs global entropy maximization)
« on: 03/09/2020 06:35:57 »
To choose random walk on a graph, it seems natural to to assume that the walker jumps using each possible edge with the same probability (1/degree) - such GRW (generic random walk) maximizes entropy locally (for each step).
Discretizing continuous space and taking infinitesimal limit we get various used diffusion models.

However, looking at mean entropy production: averaged over stationary probability distribution of nodes, its maximization leads to usually a bit different MERW: https://en.wikipedia.org/wiki/Maximal_entropy_random_walk

It brings a crucial question which philosophy should we choose for various applications - I would like to discuss.

GRW
- uses approximation of (Jaynes) https://en.wikipedia.org/wiki/Principle_of_maximum_entropy
- has no localization property (nearly uniform stationary probability distribution),
- has characteristic length of one step - this way e.g. depends on chosen discretization of a continuous system.

MERW
- is the one maximizing mean entropy, "most random among random walks",
- has strong localization property - stationary probability distribution exactly as quantum ground state,
- is limit of characteristic step to infinity - is discretization independent.

Simulator of both for electron conductance: https://demonstrations.wolfram.com/ElectronConductanceModelsUsingMaximalEntropyRandomWalks/
Diagram with example of evolution and stationary denstity, also some formulas (MERW uses dominant eigenvalue):

« Last Edit: 03/09/2020 06:50:41 by Jarek Duda »
Logged
 



  • Print
Pages: [1]   Go Up
« previous next »
Tags:
 
There was an error while thanking
Thanking...
  • SMF 2.0.15 | SMF © 2017, Simple Machines
    Privacy Policy
    SMFAds for Free Forums
  • Naked Science Forum ©

Page created in 0.239 seconds with 25 queries.

  • Podcasts
  • Articles
  • Get Naked
  • About
  • Contact us
  • Advertise
  • Privacy Policy
  • Subscribe to newsletter
  • We love feedback

Follow us

cambridge_logo_footer.png

©The Naked Scientists® 2000–2017 | The Naked Scientists® and Naked Science® are registered trademarks created by Dr Chris Smith. Information presented on this website is the opinion of the individual contributors and does not reflect the general views of the administrators, editors, moderators, sponsors, Cambridge University or the public at large.