0 Members and 1 Guest are viewing this topic.
The presumable structure of a thermonuclear bomb is as follows: at its center is an atomic bomb; surrounding it is a layer of lithium deuteride (a compound of lithium and deuterium, the isotope of hydrogen with mass number 2); around it is a tamper, a thick outer layer, frequently of fissionable material, that holds the contents together in order to obtain a larger explosion. Neutrons from the atomic explosion cause the lithium to fission into helium, tritium (the isotope of hydrogen with mass number 3), and energy. The atomic explosion also supplies the temperatures needed for the subsequent fusion of deuterium with tritium, and of tritium with tritium (50,000,000°C and 400,000,000°C, respectively). Enough neutrons are produced in the fusion reactions to produce further fission in the core and to initiate fission in the tamper.
QuoteThe presumable structure of a thermonuclear bomb is as follows: at its center is an atomic bomb; surrounding it is a layer of lithium deuteride (a compound of lithium and deuterium, the isotope of hydrogen with mass number 2); around it is a tamper, a thick outer layer, frequently of fissionable material, that holds the contents together in order to obtain a larger explosion. Neutrons from the atomic explosion cause the lithium to fission into helium, tritium (the isotope of hydrogen with mass number 3), and energy. The atomic explosion also supplies the temperatures needed for the subsequent fusion of deuterium with tritium, and of tritium with tritium (50,000,000°C and 400,000,000°C, respectively). Enough neutrons are produced in the fusion reactions to produce further fission in the core and to initiate fission in the tamper.http://www.infoplease.com/ce6/history/A0824719.html