The Naked Scientists
  • Login
  • Register
  • Podcasts
      • The Naked Scientists
      • eLife
      • Naked Genetics
      • Naked Astronomy
      • In short
      • Naked Neuroscience
      • Ask! The Naked Scientists
      • Question of the Week
      • Archive
      • Video
      • SUBSCRIBE to our Podcasts
  • Articles
      • Science News
      • Features
      • Interviews
      • Answers to Science Questions
  • Get Naked
      • Donate
      • Do an Experiment
      • Science Forum
      • Ask a Question
  • About
      • Meet the team
      • Our Sponsors
      • Site Map
      • Contact us

User menu

  • Login
  • Register
  • Home
  • Help
  • Search
  • Tags
  • Member Map
  • Recent Topics
  • Login
  • Register
  1. Naked Science Forum
  2. On the Lighter Side
  3. New Theories
  4. Is this model a candidate for the graviton and quantum gravity?
« previous next »
  • Print
Pages: [1]   Go Down

Is this model a candidate for the graviton and quantum gravity?

  • 0 Replies
  • 951 Views
  • 2 Tags

0 Members and 1 Guest are viewing this topic.

Offline imetheman (OP)

  • Jr. Member
  • **
  • 31
  • Activity:
    0%
  • Thanked: 1 times
    • View Profile
Is this model a candidate for the graviton and quantum gravity?
« on: 23/11/2017 02:40:27 »
Consider a hypothetical sphere B which is 3 Planck lengths in diameter. The surface of sphere B is 1 Planck length equidistant from another hypothetical sphere A, which exists at the centre of sphere B -  sphere A therefore having a diameter of 1 Planck length.

As 1 PL represents the smallest distance that light can travel over a period of 1 Planck second [ and therefore also the quickest possible time that information can be transferred over a distance of 1 PL in 3 dimensional space], the existence of sphere A in any physical 3 D space remains totally hypothetical, given that a 1 PL diameter sphere would 'exist' outwith time and space.  For the purposes of geometry, sphere A can therefore be described as representing a dimensionless point [or singularity] which exists in equilibrium at the centre of sphere B. 

If we start by regarding the surface of the 1 PL diameter sphere A, as representing a zero singularity starting point in both time and space, and if we accept that any information on the state of sphere A into external 3D space is limited by the speed of light, then we can declare that after a period of 1 Planck second, the information on the state of sphere A has expanded to a sphere which is 3 Planck lengths in diameter. The fact that this 3 PL diameter sphere can potentially only be achieved after a period of 1 PS means that relative to sphere B, sphere A instantaneously exists in the past. As such, no energy is being exchanged between the past and the present.

The ratio of the expansion/increase of the diameter of subsequent spheres of 2 Planck lengths per 1 Planck second [1-3, 2-5, 3-7, 4-9 …......] continues out into infinity. Therefore from edge to edge, the diameter of any given 'Planck' sphere is always greater than the distance covered by the velocity of the speed of light. As such, after the creation of the 3 PL diameter from the 1PL singularity at the centre, no 'interior' earlier sphere can ever effect any 'exterior' later sphere. In other words events which happened in the past can never affect any future events.   

Consider now another hypothetical singularity coordinate C, which exists in the external 3 dimensional space relative to singularity A. Suppose both coordinates  co-exist in 2 dimensions in a state of mutual equilibrium – in other words that they are static relative to each other and that no information is being exchanged between them.  The situation between A and C is represented by an infinite straight line.

The equilibrium which exists between A & C can only be disrupted through the application of another external force D, acting on either coordinates A or C. The equilibrium at either point A or C is disrupted when when either A or C registers a movement of it's partner which is greater than 1 Planck length of movement.

In this respect, 1 PL of movement as detected at either coordinate A or C [of it's partner]  is determined by a specific arc angle of movement. The specific value of the angle [and therefore that which defines 1 Planck length of movement] is determined by a specific angle of deviation from the notional 180 degree straight line which exists between them.  In this situation either point A or C can be regarded as being either the transmitter or receiver and vice versa.

Any 2 point coordinates in space can be regarded as continuing to exist in equilibrium over time whilst the relative movement of either [at the receiver] remains within an acute angle of the Planck length arc angle. The period of time which 2 coordinates remain in equilibrium is determined by their relative local velocities and the 3D physical distance between them.  ( Whatever the value of this angle of deviation is, I haven't a clue. I'm not clever enough to work it out. I know however that this angle represents the value of the FSC and that the Nobel prize for physics and mathematics awaits the 1st person to figure out the equation).

Whenever a receiver A registers a movement of 1 PL of a transmitter B [which it previously was in equilibrium with], the coordinate of the receiver A is instantaneously moved in 3D space a distance of 1 PL closer to B in a direction along a 180 degree line [as determined by the new registered position at receiver A of the transmitter B].

The value of 1 Planck length of movement in external 3D space is determined at the receiver only. Depending on the relative local velocity of the transmitter and the physical distance from the receiver, it may take many millions of years and travel many billions of miles before it is registered as 1 Planck arc angle of movement at the receiver.  At the precise moment that an external movement is registered at the receiver as 1 Planck angle of movement,  the coordinate of the receiver instantaneously moves a distance of 1 PL in a direction 180 degrees towards the source.   

The relative velocity of the transmitter and it's distance from the receiver represents the pulse frequency of the disruption of the equilibrium of the receiver by the transmitter. Every pulse of disruption of the transmitter on the receiver results in the movement of 1 PL of the receiver towards the transmitter.  Between the registered pulses of 1 PL of detected movement, the receiver point coordinate can be described as existing in equilibrium with the transmitter point coordinate.   

The frequency of the planck angle pulse of movement from any external source which is registered at any given point coordinate, is wholly determined by the velocity of the transmitter relative to the receiver. Each pulse of disruption of the equilibrium could be described therefore as being the equivalent of a graviton. Any change to the relative velocity of an external mass will also necessarily change the pulse frequency of the gravitons which affects the receiver. An increase in the velocity of any external mass relative to any given receiver,  also increases the frequency of graviton pulses from that mass. An increase in graviton pulses from any given source equates as an increase in that source's relative force of gravity.           

The fact that any external movement can only be registered at any given receiver in increments of 1 Planck length arc angle and that each pulse is equivalent to1 graviton, represents the quantisation of the force of gravity. 
Logged
 



  • Print
Pages: [1]   Go Up
« previous next »
Tags: quantum gravity  / graviton 
 
There was an error while thanking
Thanking...
  • SMF 2.0.15 | SMF © 2017, Simple Machines
    Privacy Policy
    SMFAds for Free Forums
  • Naked Science Forum ©

Page created in 0.071 seconds with 34 queries.

  • Podcasts
  • Articles
  • Get Naked
  • About
  • Contact us
  • Advertise
  • Privacy Policy
  • Subscribe to newsletter
  • We love feedback

Follow us

cambridge_logo_footer.png

©The Naked Scientists® 2000–2017 | The Naked Scientists® and Naked Science® are registered trademarks created by Dr Chris Smith. Information presented on this website is the opinion of the individual contributors and does not reflect the general views of the administrators, editors, moderators, sponsors, Cambridge University or the public at large.