0 Members and 5 Guests are viewing this topic.
True, most of these disasters have been caused by a failure of the water supply or seriously bad science, but it's difficult to imagine how a few percent more foliage could be a Bad Thing. 400 ppm CO2 won't do you any harm, and it may just help to avert then next major agricultural catastrophe.
11% greening in response to 15% CO2 increase over the same period is hardly unexpected in desert plants that are not water-limited in their photosynthetic response. Fact is that most plants, including over 90% of food crops, are water-limited.
henry saysI am not serious?
true, I don't know much about computer scienceand I do think you and me are good chemists, both of us qualifying in that direction.I am afraid you lack my knowledge on statisticswhich includes probability theory. Stats 1 is reasonably simple, stats 2 is difficult, stats 3 is more complicatedespecially on sampling techniques, where you have to be sure of randomness and representative-ness, but if you just grasped stats 1, you would understand what I am saying
Smokers do not die (immediately) from inhaling near 100% CO2
from henry (moreCarbonOK):QuoteClifford,are you a chemisdt?Any (good) chemist knows that there are giga tons and giga tons of bi-carbonates dissolved in the oceans and that (any type of) warming would cause it to be released:HCO3- + heat => CO2 (g) + OH-. This is the actual reason we are alive today. Cause and effect, get it? There is a causal relationship. More warming naturally causes more CO2. Without warmth and carbon dioxide there would be nothing, really. To make that what we dearly want, i.e. more crops, more trees, lawns and animals and people, nature uses water and carbon dioxide and warmth, mostly. Wake up out of your dream worlds. More CO2 is better. I hope you at least agree with me on that.Henry are you a chemist? Any (good) chemist knows that there must be a stoichiometric balance in an equation system like the one you have been quoting so frequently to justify your simplistic assumption. If the equation that you are relying on to account for the increase in atmospheric CO2 as the result of increasing temperature, then the alkalinity of sea water would be rising in accordance with the increase in atmospheric CO2. In fact it has been falling. This is more in line with the conventional explanation of a steady increase in atmospheric CO2 in line with human activity, with approximately one third of the additional CO2 burden being taken up by the world's oceans. An analysis of the global sources and sinks of CO2 also matches the conventional explanation: CO2 is mostly generated over land, and much more over populated industrialized land, and is mostly absorbed in the oceans. The models now have a fine enough resolution to pick out specific areas of ocean, e.g. the Behring Strait, where CO2 is being released to the atmosphere. But they are more than compensated for by the overall effect of the oceans in absorbing CO2. (By the way this has been confirmed by direct measurement).
I am afraid you lack my knowledge on statisticswhich includes probability theory. Stats 1 is reasonably simple, stats 2 is difficult, stats 3 is more complicatedespecially on sampling techniques, where you have to be sure of randomness and representative-ness,
Henry@damoclesclearly you are no chemist at all,otherwise, you would have known that to make a standard solution of, say, 0.1 n NaOH, you need to boil the DI water for 10 minutes to remove all CO2so the reaction HCO3 - (bi carbonate) +heat => CO2 (g) + OH-is therefore quite correct, to describe what we are doing in the lab..Since there are giga tons of bicarbonate in the oceans it follows clearly that (more) CO2 follows (more) warming.
I'm sorry, but I don't understand the use of a binomial fit to climate data. Please clarify.I regularly use the Binomial Distribution, but I don't see how this relates to climate prediction. Please provide some more information about how this curve fitting was done. The Binomial Distribution can provide a few curve shapes, based on a single probability parameter: • Declining towards zero • Increasing towards one • A bell-shaped curve, which starts at zero and ends at zero, with a peak in the middle