0 Members and 4 Guests are viewing this topic.
Quote from: lightarrow on 19/05/2013 14:20:04But if the light beam is made of single photons, a photon's wavefunction doesn't collapse after having passed through the glass prism, so that "interaction" is not a "measure" of the quantum state of the photon (in particular, of its frequency).If you read Feynman (QED pp.101 & 107), you'll see he explicitly describes the scattering interaction as the photon being absorbed by an electron and a new photon being emitted. If you prefer the wavefunction collapse interpretations, the absorbed photon's wavefunction clearly must collapse. There is a probability amplitude for photons to pass through the glass without interacting, but for the observed refraction, the scattered photons are also required. As already mentioned, the frequency of the light doesn't change, but its phase velocity does (depending on frequency). The use of 'measure' in physics generally refers to an observation (collapsing the wavefunction if you like), but in QM, any interaction has this effect, so 'measure' is the subset of interaction that involves observation. That's all I was saying.
But if the light beam is made of single photons, a photon's wavefunction doesn't collapse after having passed through the glass prism, so that "interaction" is not a "measure" of the quantum state of the photon (in particular, of its frequency).
Yes Lightarrow To me it's a question of what 'reality' should be seen as. The first thing I would like to measure is if the photon would differ for passing that glass. If it won't, then that need a explanation, as I would from my first definition expect anything meeting another object to interact, especially if passing through it.
So our partial knowledge will always be zero.
Want to expand on that one dlorde?
If that were a qm measure, why you can't say which is the photon's energy after coming out of the prism?
As you know, infact, the photon's wavefunction is still in the same superposition of frequencies which had the photon before entering the prism).
If it was a measurement, you could know. Like I said, measurements are the subset of interactions where an observer is involved.
I have some problems with the notion of an observer being involved. One has to define "observer" and I'm sure that we can all agree that the universe existed before observers where here and that life existed before it knew how to make an observation.
The first complex observer to look at it would force a collapse, and that collapse would be transmitted throughout the universe in an instant.....
... what is it about us (and cats) that could drive this collapse?[/quote I reckon the answer is that both contain information systems, and trying to maintain highly complex information in multiple states may be more difficult than maintaining mountains of material in multiple states, so if the model in the brain is forced to simplify and take up a specific form, that would force the external reality to simplify too to remain compatible with the data. So, it isn't measurement that forces a collapse, but the integration of the resulting data into an information system which will then apply complex processing to it.
... Your instantaneous transmission could happen only if every part of the Universe were in contact with every other part.
What's missing is some explanation of why (information) complexity is relevant (why not mass, or particle count, or number of interactions, ...?), and why it becomes critical at some arbitrary level. Could a mouse collapse it? a pidgeon? frog? ant? amoeba? and what about a non-biological information processing system, a PC?, IBMs 'Watson'? the internet? Where do you draw the line, and why?
Maybe, as I wrote, it's not exactly a matter of "complexity" but of irreversibility / loss of coherence (which is related to complexity but not the same thing).