The Naked Scientists
  • Login
  • Register
  • Podcasts
      • The Naked Scientists
      • eLife
      • Naked Genetics
      • Naked Astronomy
      • In short
      • Naked Neuroscience
      • Ask! The Naked Scientists
      • Question of the Week
      • Archive
      • Video
      • SUBSCRIBE to our Podcasts
  • Articles
      • Science News
      • Features
      • Interviews
      • Answers to Science Questions
  • Get Naked
      • Donate
      • Do an Experiment
      • Science Forum
      • Ask a Question
  • About
      • Meet the team
      • Our Sponsors
      • Site Map
      • Contact us

User menu

  • Login
  • Register
  • Home
  • Help
  • Search
  • Tags
  • Recent Topics
  • Login
  • Register
  1. Naked Science Forum
  2. On the Lighter Side
  3. New Theories
  4. Sum of forces not as 0 or the sum of torques not at 0 ?
« previous next »
  • Print
Pages: [1]   Go Down

Sum of forces not as 0 or the sum of torques not at 0 ?

  • 14 Replies
  • 6515 Views
  • 0 Tags

0 Members and 2 Guests are viewing this topic.

Offline LB7 (OP)

  • Sr. Member
  • ****
  • 454
  • Activity:
    0%
  • Thanked: 5 times
  • Ludovic Bavay Ubeda
Sum of forces not as 0 or the sum of torques not at 0 ?
« on: 29/11/2020 07:37:38 »
In the geometry:


* tad.png (190.95 kB . 1490x762 - viewed 9596 times)

It is not only the sum of forces that is not at 0 but also the sum of torques:

With the dimensions I gave, the surface of the blue area is : 18000 usi watch http://villemin.gerard.free.fr/GeomLAV/Cercle/aaaAIRE/Rectang2.htm

The sum of torques on the all spheres is 18000

The sum of torques from the segment is integrate(x*((2pi)-2*acos(75/113)*(sqrt(75²+x²)-75)/(113-75)) dx from 0 to L = 19676

The sum of torques is not 0

I don't take the sphere packing and I think it is not necessary. Maybe I need to correct the result of the sum of torque from each sphere because the forces are not exactly at the full diameter but I think if I decrease the diameter of the spheres near 0 (in theory) I can have the full diameter, the result is not cumulative.

For the sum of forces, I have 2 radial gradients of pressure, one because the outer circle don't start like the inner but I have a second gradient of pressure because the forces from the friction are not parallel, so I need to correct the sum of forces but I don't think the sum can reach 0 because the straight segment breaks the propagation of these radial gradient of pressure and the sum of forces on each sphere is 0 inside the media.

« Last Edit: 06/12/2020 08:20:37 by LB7 »
Logged
Ludovic Bavay 19011971 Valenciennes
 



Offline LB7 (OP)

  • Sr. Member
  • ****
  • 454
  • Activity:
    0%
  • Thanked: 5 times
  • Ludovic Bavay Ubeda
Re: Sum of forces not as 0 or the sum of torques not at 0 ?
« Reply #1 on: 03/12/2020 15:38:32 »
if I consider the sum of torques at 0 I cannot have the sum of forces at 0. If I want the sum of torques at 0 I need to reduce the pressure but if I do that I increase the sum of forces. Nobody knows how to calculate theses pressures ?


https://isamax7.blogspot.com/2021/09/strategie-des-russes.html


 [ Invalid Attachment ]

« Last Edit: 25/05/2022 16:46:18 by LB7 »
Logged
Ludovic Bavay 19011971 Valenciennes
 

Offline LB7 (OP)

  • Sr. Member
  • ****
  • 454
  • Activity:
    0%
  • Thanked: 5 times
  • Ludovic Bavay Ubeda
Re: Sum of forces not as 0 or the sum of torques not at 0 ?
« Reply #2 on: 07/12/2020 08:09:00 »
With a square (empty shape), there is a torque on the square (around itself):


* d6.png (39.72 kB . 403x503 - viewed 8512 times)


* IMG_20210404_104631_906.jpg (160.34 kB, 720x1280 - viewed 342 times.)
* IsaMaX+25+mai+2022.pdf (570.82 kB - downloaded 198 times.)
« Last Edit: 25/05/2022 16:46:43 by LB7 »
Logged
Ludovic Bavay 19011971 Valenciennes
 

Offline LB7 (OP)

  • Sr. Member
  • ****
  • 454
  • Activity:
    0%
  • Thanked: 5 times
  • Ludovic Bavay Ubeda
Re: Sum of forces not as 0 or the sum of torques not at 0 ?
« Reply #3 on: 08/12/2020 05:24:29 »
With the white shape like that it is easier without any calculations:


* sfch.png (45.51 kB . 437x489 - viewed 8353 times)


* IsaMaX-22 Déc 2021.pdf (599.88 kB - downloaded 1644 times)


* x.pdf (698.93 kB - downloaded 529 times)
« Last Edit: 27/12/2021 23:50:54 by LB7 »
Logged
Ludovic Bavay 19011971 Valenciennes
 

Offline LB7 (OP)

  • Sr. Member
  • ****
  • 454
  • Activity:
    0%
  • Thanked: 5 times
  • Ludovic Bavay Ubeda
Re: Sum of forces not as 0 or the sum of torques not at 0 ?
« Reply #4 on: 08/12/2020 18:23:24 »
nothing moves except the spheres, and it doesn't change the others torques...

what else ? Maxwell :)
« Last Edit: 08/12/2020 18:50:00 by LB7 »
Logged
Ludovic Bavay 19011971 Valenciennes
 



Offline LB7 (OP)

  • Sr. Member
  • ****
  • 454
  • Activity:
    0%
  • Thanked: 5 times
  • Ludovic Bavay Ubeda
Re: Sum of forces not as 0 or the sum of torques not at 0 ?
« Reply #5 on: 09/12/2020 10:22:41 »
With that simplified shape to reduce the calculations. Like that I can assume the horizontal pressure is the same at the inner circle than the outer circle (because the sum of forces is 0, maybe...). So the sum of torques ? on the sphere it is 6778 (calculated with the area). But how I can have that value with the horizontal surfaces ? If I take piF, the max pressure I have 10562.

The logic (Inner R=75, outer R=113):

1/ The sum of forces I give to the terminal spheres is vertical
2/ The horizontal walls can only give a vertical force
3/ hyp1: I consider the sum of forces equal to 0, so for a given horizontal the pressure is the same (it is possible to think with different diameters inner/outer) because the horizontal forces is at 0 (hyp1), it is very strange to say the pressure is the same for a given horizontal...
4/ The area of the spheres is pi/2*(113²-75²)-AT = 11221-2225*2 = 6771, AT=A1+A2 (link above), A2=0.5*(113²-75²)*(113-75), AD=sqrt(2*113*(11375)), h=sqrt(113²-AD²/4), A1=113²*acos(h/113)-h*sqrt(113²-h²)
5/ hyp2: the sum of torques is 0, so the difference of pressure between top/bottom is area/(113*cos(pi/2-acos(75/113)))²/2 = 1.89 (that result is very strange in comparison with the lateral pressure...)
6/ The vertical bottom force from the horizontal surfaces is 1.89*84.522 = 160.23 and the sum of forces from the terminal forces I need to give from A0 is 2*integrate(cos(atan(x/75)) from 0 to 113*cos(pi/2-acos(75/113) dx = 72.62*2 = 145.25, the vertical forces from the curved surface is 67.6 because it is 75*integrate(1.89*(x-pi/2)/pi) dx from pi/2 to -pi/2 less 113*integrate(1.89(x-a)/(2a)) dx from a to -a with a=pi/2-acos(75/113)=0.72. The sum of vertical forces is 160.23-145.25-67.6 not 0

The hyp1 is false... but I think it is the hyp2 :) it is easier to think the sum of torques is not conserved, the sum of forces ? maybe but in that case I was wrong about my theory about gravitation, sniff


* IsaMaX-6-janvier 2022.pdf (773.13 kB - downloaded 562 times)

* fr.png (17 kB, 383x376 - viewed 285 times.)
« Last Edit: 06/01/2022 20:32:32 by LB7 »
Logged
Ludovic Bavay 19011971 Valenciennes
 

Offline LB7 (OP)

  • Sr. Member
  • ****
  • 454
  • Activity:
    0%
  • Thanked: 5 times
  • Ludovic Bavay Ubeda
Re: Sum of forces not as 0 or the sum of torques not at 0 ?
« Reply #6 on: 11/12/2020 08:04:51 »
The logic (Inner R=75, outer R=113):

1/ The sum of forces I give from A0 to the terminal spheres is vertical
2/ The horizontal walls can only give a vertical force
3/ hyp1: I consider the sum of forces equal to 0, so the sum of horizontal forces is 0 and the sum of vertical forces is 0, so for a given horizontal the pressure is the same (it is possible to think with different diameters inner/outer) because the horizontal forces is at 0 (hyp1), it is very strange to say the pressure is the same for a given horizontal...
4/ The area of the spheres is pi/2*(113²-75²)-AT = 11221-2225*2 = 8996, AT=A1+A2 (link above), A2=0.5*(113²-75²)*(113-75), AD=sqrt(2*113*(113-75)), h=sqrt(113²-AD²/4), A1=113²*acos(h/113)-h*sqrt(113²-h²)
5/ hyp2: the sum of torques is 0, so the difference of pressure between top/bottom is area/(113*cos(pi/2-acos(75/113)))²/2 = 2.51 (that result is very strange in comparison with the lateral pressure...)

Maybe the following is false:

6/ The vertical bottom force from the horizontal surfaces is 2.51*84.522 = 212 and the sum of forces from the terminal forces I need to give from A0 is 2*integrate(cos(atan(x/75)) from 0 to 113*cos(pi/2-acos(75/113) dx = 72.62*2 = 145.25, the vertical forces from the curved surface is 67.6 because it is 75*integrate(2.51*(x-pi/2)/pi) dx from pi/2 to -pi/2 less 113*integrate(2.51(x-a)/(2a)) dx from a to -a with a=pi/2-acos(75/113)=0.72. The sum of vertical forces is 212.23-145.25-89.77 not 0

Because nothing can affirm the pressure is linear from top to bottom. But in that case the law of vertical pressure is not progressive, the gradient of pressure must be higher from top than it is at the bottom. It is very strange to have that sort of gradient of pressure from the geometry. I will ameliorate my logic to break that interrogation.
« Last Edit: 11/12/2020 08:30:15 by LB7 »
Logged
Ludovic Bavay 19011971 Valenciennes
 

Offline LB7 (OP)

  • Sr. Member
  • ****
  • 454
  • Activity:
    0%
  • Thanked: 5 times
  • Ludovic Bavay Ubeda
Re: Sum of forces not as 0 or the sum of torques not at 0 ?
« Reply #7 on: 11/12/2020 09:01:50 »
The law of the gradient cannot be one time up/down for one example and down/up for the other example.

For the calculations:

Area of the spheres (sphere packing at 1):

A2=0.5*sqrt(R2²-R1²)*(R2-R1)
AD=sqrt(2*R2*(R2-R1))
H=sqrt(R2²-AD²/4)
A1=R2²*acos(H/R2)-H*sqrt(R2²-H²)
AT=A1+A2
AI=pi/2*(R2²-R1²)-AT
L=R2*cos(pi/2-acos(R1/R2))
P=AI/(L²/2)
FD=P*L
FU1=2*R1*hyp(asin(L/R1))
FU2=P*(R1*pi/2-R2*(pi/2-acos(R1/R2))

FV=FD-FU1-FU2

« Last Edit: 12/12/2020 06:02:29 by LB7 »
Logged
Ludovic Bavay 19011971 Valenciennes
 

Offline LB7 (OP)

  • Sr. Member
  • ****
  • 454
  • Activity:
    0%
  • Thanked: 5 times
  • Ludovic Bavay Ubeda
Re: Sum of forces not as 0 or the sum of torques not at 0 ?
« Reply #8 on: 11/12/2020 18:10:48 »
For example:

R1=8,R2=10 => FV=-3.8
R1=5,R2=10 => FV=0.86

The sign changed so the gradient must change. So one hypothesis is false the sum of torque = 0 or the sum of forces = 0.




« Last Edit: 16/08/2021 18:44:37 by LB7 »
Logged
Ludovic Bavay 19011971 Valenciennes
 



Offline LB7 (OP)

  • Sr. Member
  • ****
  • 454
  • Activity:
    0%
  • Thanked: 5 times
  • Ludovic Bavay Ubeda
Re: Sum of forces not as 0 or the sum of torques not at 0 ?
« Reply #9 on: 12/12/2020 11:03:50 »
Inside the blue container, I can add an empty shape. The torque on the shape 1 is the same than the torque on the shape 2 but the number of the lack of blue spheres is not the same... Why the torque is the same ? because for a given horizontal the pressure is the same (hypothesis) and here I choose the length of the horizontal segment identical.

* g5.png (13.3 kB, 423x547 - viewed 287 times.)
« Last Edit: 14/08/2021 20:53:13 by LB7 »
Logged
Ludovic Bavay 19011971 Valenciennes
 

Offline LB7 (OP)

  • Sr. Member
  • ****
  • 454
  • Activity:
    0%
  • Thanked: 5 times
  • Ludovic Bavay Ubeda
Re: Sum of forces not as 0 or the sum of torques not at 0 ?
« Reply #10 on: 14/12/2020 09:35:49 »
I drew the container and the empty white shape. It proves the sum of torques or the sum of forces (it is not an exclusive OR) cannot be at 0 so the sum of energy too.


* d9.png (13.46 kB, 356x459 - viewed 271 times.)

* c6.png (15.79 kB, 374x467 - viewed 350 times.)
« Last Edit: 14/08/2021 20:52:58 by LB7 »
Logged
Ludovic Bavay 19011971 Valenciennes
 

Offline LB7 (OP)

  • Sr. Member
  • ****
  • 454
  • Activity:
    0%
  • Thanked: 5 times
  • Ludovic Bavay Ubeda
Re: Sum of forces not as 0 or the sum of torques not at 0 ?
« Reply #11 on: 14/12/2020 15:37:19 »
I can took the empty shapes very small. I can change the position of the white shape inside the blue container, A1 passes passes through the vertical that passes by A0. Like that I'm sure the torque is the same on the 2 white shapes but the lack of blue spheres is not the same !

* sj3.png (26.96 kB, 468x548 - viewed 286 times.)
« Last Edit: 13/10/2021 15:54:18 by LB7 »
Logged
Ludovic Bavay 19011971 Valenciennes
 

Offline LB7 (OP)

  • Sr. Member
  • ****
  • 454
  • Activity:
    0%
  • Thanked: 5 times
  • Ludovic Bavay Ubeda
Re: Sum of forces not as 0 or the sum of torques not at 0 ?
« Reply #12 on: 15/12/2020 12:00:53 »
Yes, it's done I broke at least 2 laws of conservation with that logic. The energy is not conserved :)


* r6.png (23.45 kB . 482x551 - viewed 7706 times)


* IMG_20210908_150318_230.jpg (788.76 kB, 1088x1920 - viewed 235 times.)
« Last Edit: 08/09/2021 14:05:13 by LB7 »
Logged
Ludovic Bavay 19011971 Valenciennes
 



Offline LB7 (OP)

  • Sr. Member
  • ****
  • 454
  • Activity:
    0%
  • Thanked: 5 times
  • Ludovic Bavay Ubeda
Re: Sum of forces not as 0 or the sum of torques not at 0 ?
« Reply #13 on: 02/09/2021 04:18:56 »
Just to inform I posted some information in french here :

https://overunity.com/18897/un-debut-de-resume-de-mon-histoire/msg560027/#msg560027

* IMG_20210906_174034_195.jpg (860.62 kB, 1920x1088 - viewed 246 times.)

* IMG_20210908_094948_477.jpg (526.65 kB, 1088x1920 - viewed 225 times.)

* IMG_20210908_111415_724.jpg (781.43 kB, 1920x1088 - viewed 230 times.)
« Last Edit: 13/10/2021 15:54:37 by LB7 »
Logged
Ludovic Bavay 19011971 Valenciennes
 

Offline LB7 (OP)

  • Sr. Member
  • ****
  • 454
  • Activity:
    0%
  • Thanked: 5 times
  • Ludovic Bavay Ubeda
Re: Sum of forces not as 0 or the sum of torques not at 0 ?
« Reply #14 on: 06/12/2021 14:19:32 »
For those who are interesting in the story of what country did what to me and my girlfriend about my invention, I resumed it on the pdf. It is in french but it is easily translated in english I think.


* IsaMaX-6 Déc 2021.pdf (284.88 kB - downloaded 600 times)


* IsaMaX-20 Déc 2021.pdf (537.39 kB - downloaded 734 times)

* im1.png (211.24 kB, 1490x762 - viewed 258 times.)
* IsaMaX-6 Déc 2021.pdf (284.88 kB - downloaded 171 times.)
« Last Edit: 20/12/2021 18:34:51 by LB7 »
Logged
Ludovic Bavay 19011971 Valenciennes
 



  • Print
Pages: [1]   Go Up
« previous next »
Tags:
 
There was an error while thanking
Thanking...
  • SMF 2.0.15 | SMF © 2017, Simple Machines
    Privacy Policy
    SMFAds for Free Forums
  • Naked Science Forum ©

Page created in 1.137 seconds with 57 queries.

  • Podcasts
  • Articles
  • Get Naked
  • About
  • Contact us
  • Advertise
  • Privacy Policy
  • Subscribe to newsletter
  • We love feedback

Follow us

cambridge_logo_footer.png

©The Naked Scientists® 2000–2017 | The Naked Scientists® and Naked Science® are registered trademarks created by Dr Chris Smith. Information presented on this website is the opinion of the individual contributors and does not reflect the general views of the administrators, editors, moderators, sponsors, Cambridge University or the public at large.