The Naked Scientists
  • Login
  • Register
  • Podcasts
      • The Naked Scientists
      • eLife
      • Naked Genetics
      • Naked Astronomy
      • In short
      • Naked Neuroscience
      • Ask! The Naked Scientists
      • Question of the Week
      • Archive
      • Video
      • SUBSCRIBE to our Podcasts
  • Articles
      • Science News
      • Features
      • Interviews
      • Answers to Science Questions
  • Get Naked
      • Donate
      • Do an Experiment
      • Science Forum
      • Ask a Question
  • About
      • Meet the team
      • Our Sponsors
      • Site Map
      • Contact us

User menu

  • Login
  • Register
  • Home
  • Help
  • Search
  • Tags
  • Recent Topics
  • Login
  • Register
  1. Naked Science Forum
  2. Non Life Sciences
  3. Physics, Astronomy & Cosmology
  4. Dipoles radiation and physical reality of potentials
« previous next »
  • Print
Pages: [1]   Go Down

Dipoles radiation and physical reality of potentials

  • 2 Replies
  • 5489 Views
  • 0 Tags

0 Members and 1 Guest are viewing this topic.

Offline compuAI (OP)

  • Jr. Member
  • **
  • 23
  • Activity:
    0%
  • Thanked: 2 times
  • Naked Science Forum Newbie
Dipoles radiation and physical reality of potentials
« on: 21/09/2022 19:53:25 »
In this work are investigated details of an elementary electric and magnetic dipole radiation at distances much greater than size of the emitting element. Debatable conclusions are drawn.

Formulas are given in a cylindrical coordinate system (ρ,φ,z)
r2 = ρ2 + z2
Given this, it is possible to write expressions differently for ρ and z
For example, 2 - 3 · ρ2 / r2 = 3 · z2 / r2 - 1
For all values ∂/∂φ = 0 (cylindrical symmetry)
Time derivatives are denoted by a quote '

Electric elementary dipole

Charge oscillates along z-axis near zero point with frequency ω, amplitude of dipole moment is P0.
Dipole moment:
Pz = P0 · cos(ω·t)

Auxiliary functions:
COS = cos(ω·(t - r/c)), SIN = sin(ω·(t - r/c))

Scalar potential:
a = P0 / (4·π·ε0) · z / r2 · (1 / r · COS - ω/c · SIN)
a' = - P0 / (4·π·ε0) · ω · z / r2 · (ω/c · COS + 1 / r · SIN)

Vector potential:
Az = - P0 · μ0/(4·π) · ω / r · SIN
Az' = - P0 · μ0/(4·π) · ω2 / r · COS
div A  = ∂Az/∂z = P0 · μ0/(4·π) · ω · z / r2 · (ω/c · COS + 1 / r · SIN)
a' = - c2 · div A

Scalar potential gradient:
∂a/∂ρ = P0 / (4·π·ε0) · ρ · z / r3 · {(ω2/c2 - 3 / r2) · COS + ω/c · 3 / r · SIN}
∂a/∂z = P0 / (4·π·ε0) / r2 · {1 / r · (ω2/c2 · z2 + 1 - 3 · z2 / r2) · COS + ω/c · (3 · z2 / r2 - 1) · SIN}

Magnetic induction:
Bφ = - ∂Az/∂ρ = - P0 · μ0/(4·π) · ω · ρ / r2 · (ω/c · COS + 1 / r · SIN)
Bφ' = - P0 · μ0/(4·π) · ω2 · ρ / r2 · (1 / r · COS - ω/c · SIN)

Electric field:
Eρ = - ∂a/∂ρ = - P0 / (4·π·ε0) · ρ · z / r3 · {(ω2/c2 - 3 / r2) · COS + ω/c · 3 / r · SIN}
Ez = - Az' - ∂a/∂z = P0 / (4·π·ε0) / r · {(ω2/c2 · ρ2 / r2 - 1 / r2 + 3 · z2 / r4) · COS + ω/c / r · (1 - 3 · z2 / r2) · SIN}

Electric field annular curl:
∂Eρ/∂z - ∂Ez/∂ρ = P0 / (4·π·ε0) · ω2/c2 · ρ / r2 · (1 / r · COS -ω/c · SIN)

Bφ' = - (∂Eρ/∂z - ∂Ez/∂ρ)
as it should be in equations of electromagnetic field.

div E = ∂Eρ/∂ρ + Eρ / ρ + ∂Ez/∂z = 0 (checked)

Magnetic field curl:
Jρ = - 1/μ0 · ∂Bφ/∂z = - P0 / (4·π) · ω · ρ · z / r3 · {ω/c · 3 / r · COS - (ω2/c2 - 3 / r2) · SIN}
Jz = 1 / μ0 · (∂Bφ/∂ρ + Bφ / ρ) = P0 / (4·π) · ω / r · {ω/c / r · (1 - 3 · z2 / r2) · COS - (ω2/c2 · ρ2 / r2 - 1 / r2 + 3 · z2 / r4) · SIN}

Eρ' = - P0 / (4·π·ε0) · ω · ρ · z / r3 · {ω/c · 3 / r · COS - (ω2/c2 - 3 / r2) · SIN} = Jρ/ε0
Ez' = P0 / (4·π·ε0) · ω / r · {ω/c / r · (1 - 3 · z2 / r2) ·  COS - (ω2/c2 · ρ2 / r2 - 1 / r2 + 3 · z2 / r4) · SIN} = Jz/ε0
as it should be in equations of electromagnetic field.

Magnetic dipole

An annular current with small radius R changes direction according to periodic law.
Magnetic moment is directed along z-axis:
Mz = M0 · cos(ω·t), где M0 = π · R2 · I0, I0 is current amplitude.
 
Auxiliary functions:
COS = cos(ω·(t - r/c)), SIN = sin(ω·(t - r/c))

Vector potential:
Aφ = M0 · μ0/(4·π) · ρ / r2 · (1 / r · COS - ω/c · SIN)

Electric field:
Eφ = - Aφ' = M0 · μ0/(4·π) · ω · ρ / r2 · (ω/c · COS + 1 / r · SIN)
Eφ' = M0 · μ0/(4·π) · ω2 · ρ / r2 · (1 / r · COS - ω/c · SIN)

Magnetic induction:
Bρ = - ∂Aφ/∂z = - M0 · μ0/(4·π) · ρ · z / r3 · {(ω2/c2 - 3 / r2) · COS + ω/c · 3 / r · SIN}
Bz = ∂Aφ/∂ρ + Aφ / ρ = M0 · μ0/(4·π) / r2 · {(ω2/c2 · ρ2 / r + 2 / r - 3 · ρ2 / r3) · COS - ω/c · (2 - 3 ·ρ2 / r2) · SIN}

Bρ' = - M0 · μ0/(4·π) · ω · ρ · z / r3 · {ω/c · 3 / r · COS - (ω2/c2 - 3 / r2) · SIN} = - (- ∂Eφ/∂z)
Bz' = - M0 · μ0/(4·π) · ω / r2 · {ω/c · (2 - 3 · ρ2 / r2) · COS + (ω2/c2 · ρ2 / r + 2 / r - 3 · ρ2 / r3) · SIN} = - (∂Eφ/∂ρ + Eφ / ρ)
as it should be in equations of electromagnetic field.

Magnetic field curl:
Jφ = 1/μ0 · (∂Bρ/∂z - ∂Bz/∂p) = M0 · μ0/(4·π) · ω2/c2 · ρ / r2 · {1 / r · COS - ω/c · SIN}

Eφ' = Jφ/ε0 (checked)
as it should be in equations of electromagnetic field.

Conclusions

Although divergence of electric field div(E) is zero everywhere (charge density is zero), scalar potential is urgently needed to describe radiation of electric dipole. To express time derivative a' is required vector potential A. At long distances, there is no question of lagging potentials of forcibly oscillating system, waves must propagate "by themselves" in wave zone. It begs the conclusion that potentials are objective physical reality, fundamental fields in vacuum, and are not mathematical abstractions. To describe dipole radiation, three fundamental fields are sufficient:

a' = - c2 · div A
A' = - E - grad a
E' = c2 · rot rot A

At the same time, Laplacian div grad (a) is fundamentally different from local charge density ε0 · div E, these are different quantities. Laplacian of scalar potential can be locally not zero in electric dipole radiation, unlike divergence of electric field. Formally, both of these quantities are "conserved", since it is possible to express derivatives in time as minus divergence of some known "flow" or current. But with respect to electric dipole, laplasian of scalar potential is preserved only globally, when positive density is emitted in one direction along z-axis, in opposite direction the same modulo negative goes. It cannot be said that scalar potential has significant value only in near zone of forced generation and lagging potentials. In far wave zone, its intensity, like time derivative, decreases proportionally to 1 / r along z-axis, the same applies to its gradient in some directions (ρ · z / r3).

Electric and magnetic field decrease on average with distance as 1 / r, respectively, energy density decreases as 1 / r2. That is, integral of energy density throughout space is infinite, and elementary dipoles cannot be used as basis for representing field objects with finite energy. The more time emitter works, more energy it loses with waves, without restrictions on final value.

Considerations about field objects moving at the speed of light are in topic:
https://www.thenakedscientists.com/forum/index.php?topic=85606
« Last Edit: 07/10/2022 09:09:40 by compuAI »
Logged
 



Offline Origin

  • Naked Science Forum King!
  • ******
  • 2248
  • Activity:
    0%
  • Thanked: 210 times
  • Nothing of importance
Re: Dipoles radiation and physical reality of potentials
« Reply #1 on: 21/09/2022 20:01:50 »
Looks like a Rieku sock puppet.
Logged
 

Offline compuAI (OP)

  • Jr. Member
  • **
  • 23
  • Activity:
    0%
  • Thanked: 2 times
  • Naked Science Forum Newbie
Re: Dipoles radiation and physical reality of potentials
« Reply #2 on: 22/09/2022 17:59:29 »
It is serious work.
Logged
 



  • Print
Pages: [1]   Go Up
« previous next »
Tags:
 
There was an error while thanking
Thanking...
  • SMF 2.0.15 | SMF © 2017, Simple Machines
    Privacy Policy
    SMFAds for Free Forums
  • Naked Science Forum ©

Page created in 0.541 seconds with 30 queries.

  • Podcasts
  • Articles
  • Get Naked
  • About
  • Contact us
  • Advertise
  • Privacy Policy
  • Subscribe to newsletter
  • We love feedback

Follow us

cambridge_logo_footer.png

©The Naked Scientists® 2000–2017 | The Naked Scientists® and Naked Science® are registered trademarks created by Dr Chris Smith. Information presented on this website is the opinion of the individual contributors and does not reflect the general views of the administrators, editors, moderators, sponsors, Cambridge University or the public at large.