0 Members and 4 Guests are viewing this topic.
The electromagnetic fields that comprise a photon are in a state of constant change. This change drives the central point of a photon forward through space. We measure the photon's path to be that of the central point, but the fields exist spatially around the photon at an amplitude that is greatest close to the point and diminishes as the square of distance away from the point.When this photon nears its target, churning electrons belonging to atoms in the target begin to sense the photon's approach. Some electromagnetic fields in the electrons will be in good phase relation with the approaching photon. Among this huge jumble of moving electrons, some will be more inclined to absorb the photon's fields than others. Those most inclined will probably not be dead centre in the photon's path.
So why don't electrons stick to protons instead of flying around the nucleus? Magnets do it, so why can't atoms?
It has to do with the uncertainty principle.
Quote from: Mr. Scientist on 26/10/2009 10:58:54It has to do with the uncertainty principle.I'm afraid not. It's actually a result of two physical phenomena.1) Pauli exclusion principleThis states that two fermions must be distinguishable i.e. you can always tell them apart. In practice, this means they must have at least one different quantum number. This restricts electrons into their shell structure. For example, consider hydrogen. The first shell (s- shell) has quantum numbers (1,1,1) and (1,1,-1). This is why two electrons, at most, can occupy the s- shell. These number combinations are easily derivable by solving the Schrodinger wave equation for hydrogen.2) EntropyProcesses in physics tend to increase the entropy of the universe. Energy likes to go from ordered states to disordered (like how a ball wants to roll down a slope). A proton and an electron is more energetically favourable than a neutron. The decay of neutrons this way is known as beta decay. In order to 'squash' together a proton and an electron into a neutron you need to supply a large amount of energy, as well as overcome the electron degeneracy force (as you're probably going to try it with a large collection of atoms rather than waiting millions of years for a single electron to pair up). This occurs inside neutron stars.
But it seems that we hve experimental evidence for these conclusions.
But, we know the collapse must occur as an actual transition from having matter acts as waves and then suddenly not.