0 Members and 23 Guests are viewing this topic.
2. What happens if you use two sheets of dielectric and only move the top sheet?
3. What happens if you use two separate sheets of dielectric, one for each can?
Practical electrostatics is much more difficult and prone to all sorts of errors than electrodynamics!
I'm not sure what you mean by this. Do you refer to the corrugated plastic plate?Where do you want the plate to move to?
And the baffling question is why an alternating current should induce a unidirectional movement of static charge.
Quote from: hamdani yusuf on 02/07/2016 13:47:55Here is the visualization of the second experiment, which start from the first as described before. If the charged particle is stationary to the wire, no magnetic force is received.Next, the wire is zoomed to show the electrons and metal atoms inside.From the picture above, the electrons inside the wire move to the left with speed v, but particle q doesn't receive magnetic force.Now if the wire is moved to the right with speed v, the speed of electrons becomes 0, while the speed of the metal atoms = v. It is shown that magnetic force F is produced downward.The picture above is equivalent to the picture from previous post.Here we can conclude that electron's movement is not responded by the particle, while atom's movement produces magnetic force to the particle. It seems that for a long time we had missed the difference between atoms and free electrons which cause electric current and produce magnetic force.For the second experiment, we will study the effect of the movement of charged particles inside a conductor (or convector) toward the test particle. We will study the hypothesis that magnetic force is not only affected by the magnitude of electric charge that moves inside a conductor (or convector), but also affected by the mass of the particle.Electric current in a copper wire is produced by the flow of electrons inside. The charge and mass of electrons are always the same, so we need some other particles as electric current producers to get reference. For that we will replace the conductor by a hose filled by electrolyte solution that contains ions, since ions are also electrically charged and have various masses. Some of electrolytic solutions that will be used are NaCl, H2SO4, HCl, CuSO4, FeCl3.We can make a table showing the force experienced by the stationary test particle in various velocities of both positive and negative particles in the wire. I'll use standard Lorentz force to calculate the force, which states that F = B.q.vWhere B is proportional to electric current in the wire, which depends on velocity difference between positive and negative particles in the wire.v represents the velocity difference between the test particle and the wire. Since the test particle is stationary, it's merely determined by the velocity of positive particles in the wire.It's assumed that all positive particles have uniform velocity. Negative particle has uniform velocity as well.The first table below shows the value of electric current, which depends on the difference of velocity between positive and negative particle in the wire. v+ -4 -3 -2 -1 0 1 2 3 4v- -4 0 1 2 3 4 5 6 7 8-3 -1 0 1 2 3 4 5 6 7-2 -2 -1 0 1 2 3 4 5 6-1 -3 -2 -1 0 1 2 3 4 5 0 -4 -3 -2 -1 0 1 2 3 4 1 -5 -4 -3 -2 -1 0 1 2 3 2 -6 -5 -4 -3 -2 -1 0 1 2 3 -7 -6 -5 -4 -3 -2 -1 0 1 4 -8 -7 -6 -5 -4 -3 -2 -1 0The second table below shows the velocity of the wire relative to test particle. It's determined solely by velocity of positive particle. v+ -4 -3 -2 -1 0 1 2 3 4v- -4 -4 -3 -2 -1 0 1 2 3 4-3 -4 -3 -2 -1 0 1 2 3 4-2 -4 -3 -2 -1 0 1 2 3 4-1 -4 -3 -2 -1 0 1 2 3 4 0 -4 -3 -2 -1 0 1 2 3 4 1 -4 -3 -2 -1 0 1 2 3 4 2 -4 -3 -2 -1 0 1 2 3 4 3 -4 -3 -2 -1 0 1 2 3 4 4 -4 -3 -2 -1 0 1 2 3 4The third table shows the force experienced by test particle, which is simply the multiplication of each cell in both tables above. v+ -4 -3 -2 -1 0 1 2 3 4v- -4 0 -3 -4 -3 0 5 12 21 32-3 4 0 -2 -2 0 4 10 18 28-2 8 3 0 -1 0 3 8 15 24-1 12 6 2 0 0 2 6 12 200 16 9 4 1 0 1 4 9 161 20 12 6 2 0 0 2 6 122 24 15 8 3 0 -1 0 3 83 28 18 10 4 0 -2 -2 0 44 32 21 12 5 0 -3 -4 -3 0
Here is the visualization of the second experiment, which start from the first as described before. If the charged particle is stationary to the wire, no magnetic force is received.Next, the wire is zoomed to show the electrons and metal atoms inside.From the picture above, the electrons inside the wire move to the left with speed v, but particle q doesn't receive magnetic force.Now if the wire is moved to the right with speed v, the speed of electrons becomes 0, while the speed of the metal atoms = v. It is shown that magnetic force F is produced downward.The picture above is equivalent to the picture from previous post.Here we can conclude that electron's movement is not responded by the particle, while atom's movement produces magnetic force to the particle. It seems that for a long time we had missed the difference between atoms and free electrons which cause electric current and produce magnetic force.For the second experiment, we will study the effect of the movement of charged particles inside a conductor (or convector) toward the test particle. We will study the hypothesis that magnetic force is not only affected by the magnitude of electric charge that moves inside a conductor (or convector), but also affected by the mass of the particle.Electric current in a copper wire is produced by the flow of electrons inside. The charge and mass of electrons are always the same, so we need some other particles as electric current producers to get reference. For that we will replace the conductor by a hose filled by electrolyte solution that contains ions, since ions are also electrically charged and have various masses. Some of electrolytic solutions that will be used are NaCl, H2SO4, HCl, CuSO4, FeCl3.
Here it is.//www.youtube.com/watch?v=ddLfVndz_CYThis video provide theoretical background for designing an electrodynamic balance, intended to study the origin of magnetic force, and its relationship with electricity and gravity.
On insulated conductive materials stray voltages of similar magnitude often arise and determining their origin could be difficult but it is almost certainly some environmental artefact.
As airborne charge can easily build up on isolated conductive material, a vacuum chamber would be needed with Teflon stands. Water will be a problem with a vacuum and the two containers will need to be sealed. There may be other possible sources of "contamination" but that's all I can think of at the moment.
a vacuum chamber would be needed with Teflon stands.
The theoretical background I posted previously should be enough to answer your question.
We will study the hypothesis that magnetic force is not only affected by the magnitude of electric charge that moves inside a conductor (or convector), but also affected by the mass of the particle.
If the mass of the charge carrier was a parameter in calculating the force due to a magnetic field it would have shown up long ago in countless experiments.
It is way more likely that you dealing with artefacts from environmental effects rather than science has missed something as fundamental as this.