This is just thought's and questions, no theories, not even hypothesizes, okay, some hypothesizes, possibly? And no, I haven’t even begun to touch all there could be said. And I’ll leave it, as is, so you can see just how confused I am. Yeah, I’m confused. The dichotomy between particles and waves never stops confusing me. And time, and mass, and distances and.. . It would be nice if there was a common background to it. And I probably misstate some ideas, oh yes, I’ve done it before, but here I’ve tried to avoid it, well mostly
And I have to split it into several parts to fit it in here so... Well, it's at least entangled?
Then, on the other tentacle, if it’s not argumentative and just ‘adapts’, where is the joy of reading? Also it seems I’ve lost my ‘password’ since my last visit. Well, sh* happens, right? Just look at ‘Global Warming’. And it’s been some time since I was here too, due to my lack of ‘medium’. Yep, I lost my ‘crystal bowl’. So feel free to trust me in that I’m me
I’m pretty sure on that one.. I’ve even checked me in the mirror this morning, in the process finding that one should better avoid doing so. Why? Just trust me on that one.
What it is? A work in progress, regressive progress? Progressive regress? And there is no real order to it either as I’ve added to my questions, quotes and views, where ever I pleased. So if you find one part boring or ‘incompetent’ try another. Well, judge for yourself. I’ll freely admit to wishing it was more ‘elegant’, as well as shorter. Try to read it ‘holistically’, the way it came to, it hopefully will make more sense at a second reading, but, probably not? If so, do try to read it backwards. To me it all knits together
Remember, if read holistically one percent will be quite sufficient for you to build the continuance of it according to all known principles involving holistic information. And if you find me lifting up the same old things repeatedly, you’re wrong, I wrote them after that…
So they’re definably new.
And you don't really need to take it seriously, and all that said..
I do. For now.
( I do too choose too to do do so, so?
I’m planning to have that inscribed on my tombstone too.
RIP (e)
. . . . . For now.
And my next work will be ‘The second coming’.
Catchy title, ain’t it? ( Don’t worry, you’ll get it..)
And now for that Warning Label
One way to read it might be to see it as a entangled try for that really confused sciencefiction, connected to sanity by only the thinnest of threads, soon to slip through your nervedead fingers, leaving you a disjointed wreck oozing revolted innocence at those fellow compatriots accusing you of reading it.
If you don’t like my views I mean
And yes, I’m arguing myself through a maze here, discussing ‘wrong and strange ideas’ to see if I understand them to ‘my’ satisfaction. Remember that I started to write it for my sake, not yours, also that ‘it’ may have, to you, all to obvious false conclusions. ( Easily satisfied you say? Yep, that’s me.  Oh, you
And I try to argue for there being a distanceless quality hidden inside SpaceTime creating rules we see defining it, yeah
I know, a little like ‘one dimensional strings’ but interpreted so that it seems to make sense for me. Why it should be so? Well, mostly to diminish my headache. I’m not sure, as I don’t know the math, if onedimensional strings would relate to how I think this ‘dimensionless reality’ might behave. Physicists or mathematicians reading it, ( if any ) may give up on me all to soon. . .
But please, if you're crazy or bored enough to read it, don't come complaining. And, I totally agree , it’s a totally unstructured hydra begetting all to many heads. With far more wrongs than rights to it I'm sure, but then after all is said and done, that's, .. life for you.. And me. It is in fact just that sort of scary mythological beast you might best avoid. Growing into an ever more uneven shape as it w(j)iggles itself towards obscurity. Making what sense it may out of its meager existence.
Consider yourself duly warned.
End of Warning text
As we all know, if its ‘too good’ for you it will contain a warning label.
At least, that’s how my marketing division presented it when they insisted? on me writing one.
I'm afraid that I started it some month ago to cure my boredom (and see if really understood anything at all?
, having no internet connection. Which goes a far way to show you the dangers of that. With the exemption of climate issues where I feel like that old joke. “It seems so bad that it isn’t even the bottom of the bottle, the bottom just fell out”. And there I’m afraid you’ll find me quite acerbic, lashing out. But it would please me if you would read it anyhow.
Yeah, that citation above loses something in the translation. But it’s fun in Swedish.
As we know about beer. . . And climate. Cause we have both. But the beer has been far superior to the climate lately.
Furthermore, as a layman I most likely will abuse both words and concepts that should have a more refined definition to a physicist. But as it’s just an essay and not any holy grail, please bear with me (and it) if so. And, oh yeah, That ‘arrow of time’, referred to all too often here, is just the universal macroscopic order of ‘events’ creating that ‘unwavering timeflow’ I believe us to observe in SpaceTime. Birth > to > Death. So to speak.
Hey, At least I'm still a growing boy.
laterally.
Anyway.
What is momentum? We say that photons, ‘entities’ of no mass still contain momentum. That, to me at least, singles momentum out as something differing from mass. Inertia f. ex. Can a photon be said to have inertia? (The tendency of a body to maintain its state of rest or uniform motion unless acted upon by an external force). SpaceTime 'bends' the paths of photons using gravity but is that the same as it having inertia? When we talk about mass we all know from normal experience that the heavier the car(t:) the harder it is to stop and that is what inertia normally refers to, isn't it? So, would you accept me suggesting that light bends in the nearness of gravitational objects in varying degrees due to their inertia? Nah, didn't think so, inertia to me relates to invariant mass but momentum doesn't. Also I would say that measured in 'energy' (whatever that might be) the photon always use the 'shortest path' energywise and that inertia only relates to 'invariant/rest mass' which is the kind of mass that will stay consistent no matter where you place it. Like you moving that chair to Pluto where its weight will change but its invariant mass remains the same.
Some facts about rest mass contra relativistic massQuote
Rest mass.
The invariant mass, intrinsic mass, proper mass or just mass is a characteristic of the total energy and momentum of an object or a system of objects that is the same in all frames of reference...If the system is one particle, the invariant mass may also be called the rest mass."
  End quote
versus Relativistic Mass.
 Quote
" The quantities that a moving observer measures as scaled by ? in special relativity are not confined to mass. Two others commonly encountered in the subject are a body's length in the direction of motion and its ageing rate, both of which get reduced by a factor of ? when measured by a passing observer. So, a ruler has a rest length, being the length it was given on the production line, and a relativistic or contracted length in the direction of its motion, which is the length we measure it to have as it moves past us. Likewise, a
stationary clock ages normally, but when it moves it ages slowly by the gamma factor (so that its "factory tick rate" is reduced by ?). Lastly, an object has a rest mass, being the mass it "came off the production
line with", and a relativistic mass, being defined as above. When at rest, the object's rest mass equals its relativistic mass. When it moves, its acceleration is determined by both its relativistic mass (or its rest mass, of course) and its velocity.
While relativistic mass is useful in the context of special relativity, it is rest mass that appears most often in the modern language of relativity, which centres on "invariant quantities" to build a geometrical description of relativity. Geometrical objects are useful for unifying scenarios that can be described in different coordinate systems. Because there are multiple ways of describing scenarios in relativity depending on which frame we are in, it is useful to focus on whatever invariance's we can find. This is, for example, one reason why vectors (i.e. arrows) are so useful in maths and physics; everyone can use the same arrow to express e.g. a velocity, (speed having a given direction) even though they might each quantify the arrow using different components because each observer is using different coordinates. So the reason rest mass, rest length, and proper time find their way into the tensor language of relativity is that all observers agree on their values. (These invariants then join with other quantities in relativity: thus, for example, the fourforce acting on a body equals its rest mass times its fouracceleration.) This is one reason why some physicists prefer to say that rest mass is the only way in which mass should be understood.
 End of Quote 

It may be interesting to note here that this geometric notion of describing
SpaceTime wasn't entirely shared by Einstein.
   
Quoted from John D. Norton
Department of History and Philosophy of Science
and Center for Philosophy of Science
University of Pittsburgh
"In thinking mathematically, or, as Einstein's sometimes said, formally, one takes the mathematical equations of the theory as a starting point. The hope is that by writing down the simplest mathematical equations that are applicable to the physical system at hand, one arrives at the true laws. The idea is that
mathematics has its own inner intelligence, so that once the right mathematics is found, the physical problems melt away. Philosophers will recognize this as a form of Platonism.. Just how did Einstein's physical insight work? One part was an keen instinct as to which among the flood of experimental reports were truly revealing. Another was his masterful use of thought experiments.
Through them Einstein could cut away the distracting clutter and lay bare a core physical insight in profoundly simple and powerfully convincing form.. That geometrical way of conceiving special relativity is not Einstein's. It was devised by the mathematician Hermann Minkowski shortly after Einstein published his special theory of relativity. Einstein was reluctant to adopt Minkowski's method, thinking it smacked of "superfluous learnedness." It was only well after many others had adopted Minkowski's methods that Einstein capitulated and began to use them. It was a good choice. It proved to be an essential step on the road to general relativity. Einstein preferred to think of his theory in terms of the coordinates of space and time: x, y, z and t. The essential ideas of the theory were conveyed by the algebraic properties of these quantities, treated as variables in equations. Its basic equations are the Lorentz transformation, which, in Einstein's hands, is a rule for changing the variables used to describe the physical system at hand. The laws of physics are written as symbolic formulae that include these coordinate variables.
The principle of relativity of relativity then became for Einstein an assertion about the algebraic properties of these formulae; that is, the formulae stay the same whenever we carry out the symbolic manipulation of change of variables of the Lorentz transformation. The emphasis in Einstein's algebraic approach is on variables, not SpaceTime coordinates, and formulae written using those variable, not geometrical figures in SpaceTime. For many purposes, it makes no difference which approach one uses, geometric or algebraic. Sometimes one is more useful or simpler than the other. Very often, both approaches lead us to make exactly the same calculations. We just talk a little differently about them. However there can be a big difference if we disagree over which approach is more fundamental. We now tend to think of the geometric conception as the more fundamental one and that Einstein's algebraic formulae are merely convenient instruments for getting to the geometrical properties. There is some evidence that Einstein saw things the other way round. He understood the geometric conception, but took the algebraic formulation to be more fundamental"
End Quotes
And if you're interested in what he saw as the difference's between those two
approaches you could search on. ' physics + "How did Einstein think?" John D. Norton '
(I’m sorry not to giving you the direct links for my quotations, blame it on my not having a Internet connection. But I swear to that they exist, somewhere
And no, Einstein was only human and most definitely no saint, as far as I've found out. But that imagination of his was unworldly, and a pleasure. )
Quote
The thing that never ceases to amaze me about Einstein is not just that he came up with theories that altered our fundamental understanding of our Universe (that would CLEARLY be impressive enough!). Max Planck did something quite similar in order to explain the color of light coming from hot objects (Black Body radiation). But Planck developed his theories ONLY because he could think of no other way to explain experimental results. Einstein did exactly the same thing WITHOUT any experimental results that needed an explanation! What he did (not once BUT TWICE) was to ask a perfectly hypothetical question, come up with what he thought MIGHT be the result, and then develop the result in a rigorous mathematical formula. In both cases, his theories were radical changes in basic physics. And both times his purely conjectural ideas were supported by experiment!
For SR, he asked what would happen if he moved away from a clock at the speed of light. His conclusion (somewhat reasonable) was that he would never see the clock advance, as none of the light from the clock would ever be from a time past when he started to move away at that speed. He then asked if that meant time was standing still as he moved away at that speed. He then developed a mathematical formalism that made some mindblowing ideas about the effect of uniform motion, including the famous E = mc^2.
However, even Einstein noted that his formulae for SR had no way to determine what would happen if someone were accelerating. It wasn't a thought or experiment, it was obvious  so he resolved to fill this gap. His "Aha!" moment was when he asked what would happen if someone was in an elevator in freefall in a LONG shaft. Again, he developed the idea in a mathematically rigorous way (this took YEARS) and showed that, if his ideas were correct, light from a distant star would "bend" when close to our Sun. When photographs during a eclipse showed that's exactly what happened, Einstein went (literally overnight) from respected obscurity to being the most famous scientist in the world.
Invariably, scientists develop new theoretical frameworks only when the old ones no longer explain certain experiments. Neutrino oscillation, the absence of proton decay, dark matter, and dark energy are all unexplained at this point in our history; and scientists are working furiously to develop theories that would cover these verified results. Einstein, on the other hand, developed radical theories BEFORE anyone needed them to explain anything, and experiments showed that his theories were completely correct! This never ceases to amaze me.
End of quote
Wish I knew this guys name.
But hey, all my quotes are good
( Btw: Feel free to quote this and the quotes, but also, please tell us exactly where you got it from. With enough doing so I have great hopes that it will end in something where the quoting of who quotes who, will become to the reader as a really thick and estranged phone book, totally obscuring the original quotes as well as any questions in question. It’s a holistic principle in action and I can’t wait to see it. I’ve done my part here, now it’s your turn. Yes, I decisively must insist on your ‘total history’ of ideas and sources origin, through its full hierarchy:)
Doing it this way we will soon have us a TOE..
Yep. Exactitude my aim..
