Bringing back the woolly mammoth

Could a resurrection of an ancient species, as seen in Jurassic Park, ever actually be possible?
18 July 2014

Interview with 

George Church, Harvard University

Wooly_Mammoths.jpg

Wooly mammoths

Share

In 1993 the blockbuster Jurassic Park burst onto cinema screens, grossing nearly a billion Dollars and capturing the imaginations of millions.

But could a resurrection of an ancient species like this ever actually be possible?

In 2003 the last surviving member of a wild goat species called the Bucardo was successfully cloned after it had passed away, making the species the first ever example of 'deExtinction'.

The success was short lived, as the clone died after only a few minutes, but the idea of bringing animals back from the history books has captured the Wooly mammothsimagination of many scientists.

George Church from Harvard University is one such scientist, looking to make our Jurassic Park dreams a reality, by bringing back, not dangerous dinosaurs but the gentle giants - woolly mammoths as he explained to Kat Arney.

George - So, we're really interested in reaching modern ecosystems that might be advantageous to human survival and reducing the cost of adaptation of survival of various species in those modern ecosystems. It turns we have reason to believe that mammoths might be very well adapted to the extreme cold that ironically still exists in global warming in Siberia and Canada.

Kat - So, you want to see mammoths roaming free across the Siberian tundra?

George - Or at least cold-resistant elephants.

Kat - What sort of creature are we talking about? Are we talking about 100% mammoths or some kind of hybrid in between?

George - Almost every animal species, it is hybridised with adjacent species. And so, there is really a mythology of purity here. But I think the important thing is, modern ecosystems require modern solutions and we want to use whatever we can be inspired by recently extinct species help us maintain modern ones so for example, the Asian elephant is in great trouble because it's so surrounded by humans. And so the mammoths are very closely related Asian elephants. And so, if you could get some of them sequestered where there are very few humans, it might be a plus for them and a plus for the tundra as well.

Kat - So, give us a little - a quick parted history of the mammoth. When did mammoths die out and how can you get their DNA to kind of recreate them?

George - So, they died out about 10,000, 5,000 years ago. An increasing number of them were becoming available as the tundra melts. So, their DNA is still in terrible shape because of cosmic radiation if nothing else over those 10,000 years or even 40,000 years for some of the specimens. But we can recover this DNA that's broken into sort of flattened based fragments and sequence it with determinist chemical structure with a new set of technologies that my lab and others have developed recently.

Kat - How do you turn this DNA sequence, the DNA that you've dug out of frozen mammoths?  How do you turn that into a living, breathing woolly mammoth?

George - So, another set of technologies, and this should mean read the ancient DNA that we now synthesise and insert any DNA we want into mammals with a new method called CRISPR. It's about a year and a half old, mainly developed for gene therapy but also useful for agricultural species and now, these wild species.  And it simply made the cut into the DNA very precisely at one place - needle in a haystack - sort of location in one end and then we'll swap out the new DNA for the old DNA in an elephant's stem cell, and that stem cell is capable of producing an entire baby eventually.

Kat - So, you basically chopped and changed the DNA so you've got some mammoth DNA, some elephant DNA. Presumably then you have to have an elephant surrogate mother. I mean, how good are elephants at being surrogates?

George - I mean, this would look at very much like a normal baby elephant except for the extra hair and even the hair could be delayed until they're fairly mature.

Kat - I have this idea of like a female elephant go, "What? What's that! It looks nothing like me."

George - Yeah, I think they're predisposed to cherish - you know, you've heard the expression, 'a face only a mother could love'.

Kat - A mammoth only a mother could love. So, I mean, how far away is this? I have wonderful visions of flocks of mammoths roaming free. How long do you think it will be before this becomes a reality?

George - So, it's hard to put an exact date on it, but the technology is moving very quickly. It's a sort of exponential improvement due to the excitement over healthcare benefits to humans. It kind of drives across down, so the fastest we could possibly go if it's a small number of changes need to make a cold resistant elephant to get it started, it could be in the order of a couple of years and then it takes 22 months for the baby to be born. So, that's the absolute fastest it could go and then probably much more than that.

Kat - So, it's going to be a while. But you know, with elephants and mammoths, it's very easy to see that there's kind of a relationship there. Are there other species you have your eye on? Are you kind of going to go Spielberg on us?

George - Well, I can speak for myself, that's the only one on my laboratory agenda. I'm trying to avoid carnivores for example, Revive and Restore has a large community that's looking into other species that are on the brink of extinction. We're bringing in ancient DNA to help increase their diversity, including other animals that are very recently extinct like the heath hen that was on the east coast of America.

Kat - And so, if we can get mammoths, bring the mammoths back to life, very briefly, how do you see they would enrich the diversity of the tundra and these kind of places? What good would they do?

George - A few papers have been written by ecologists such as Sergey Zimov describing how the mammoths could decrease the average temperature by poking through the snow and allowing the spring grass to come up through the dead winter grass and pushing aside trees so the grass can grow. And so, overall, resulting in a stabilisation of the tundra which is melting and releasing greenhouse gases like carbon dioxide and methane which total - and this is an amazing number - they total about 2 to 3 times the total carbon in all the forests of the world. So, if we let that escape from the tundra by melting, it would be like we burned all the forests of the world. And so, even if we don't believe in other sources of greenhouse gases, that's one we really need to be concerned with.

Chris - George, do you think it will be possible to do a full mammoth genome one day? So, rather than have to make a sort of mixture of the right bits of elephant with some mammoth genes, do you think we'll be in a position where we could get the entire mammoth genome back and see real mammoths?

George - I think if we see progress in doing the cold resistant elephants and it seem to be the cost plummets as I think it is. We have the ability. We know the basic method of doing it. It's just really a matter of bringing the price down to a point where it's exploring the feasibility from the environmental standpoint. But yes, I think it is quite feasible to do based on what we know today.

Comments

Add a comment