Could humans live forever?

28 November 2017

Interview with 

Dr Aubrey de Grey, SENS Research Foundation




Some animals appear to be able to reject the processes of ageing completely. Could this ever be the case in humans? Georgia Mills spoke to Aubrey de Grey from the SENS Research Foundation, who believes indefinite lifespan is within the reach of science.

Aubrey - Absolutely. There’s absolutely no reason why. If you look at 100 year old cars today, the people who built those cars 100 years ago would be pretty astonished that any of the cars that they built 100 years were still working in 2017. But the fact is now, if you look at those cars, nobody would say that it would be impossible for those cars to last another 100 years.

The body is fundamentally a machine. It’s a really complicated machine obviously, and it’s taking time to figure out how it works well enough to be able to do preventative maintenance with the same level of effect that we can have with a car or an aeroplane, but the fact is it’s just sort of incoherent, non-scientific, magical thinking to suggest that there would be something there that we inherently couldn’t fix.

Georgia - Aubrey De Grey is chief science officer of SENS research Foundation, a biomedical research charity based in California, which aims to reduce the damage of ageing and allow people to live younger.

Aubrey - The body does a lot of different types of damage to itself throughout life as kind of side effects of the way the body normally works and, in that sense, ageing in a living organism like you or me is exactly the same as ageing of a car or any other simple man-made machine. And so we are adopting very much the same approach that one adopts if one wants to keep a car going longer and, of course, that is simply preventative maintenance.

We identify the various types of damage that are accumulating, and we identify ways to eliminate that damage. So in the case of the human body there are seven major categories of damage. Things that have many examples within each category, but the classification is useful because for each category there is a generic approach to repairing or eliminating that damage.

For example, stem cell therapy is a generic approach to repairing one particular type of damage, namely the loss of cells, where cells die and are not automatically replaced by cell division. Stem cell therapy involves pre-programming cells into a state where you can inject them into the body and they know what to do. They divide and transform themselves into replacements for the cells that the body is not replacing on its own - that kind of thing.

Georgia - How are you looking into these? How are you testing it?

Aubrey - Of course, the details of all of this vary a lot from one project to another but, in general, this is just like any other medical research. We start out by identifying a particular approach that we think is promising for repairing a particular type of damage. And then we work to develop it initially in the laboratory, typically in cells and culture, not even in a living organism. Once we’ve got it reasonably well functioning and working in that context we will start working with mice and eventually, when it’s working well enough in mice, we can start moving to the clinic.

Georgia - Which therapy would you say is the most promising in terms of how soon it might be viable?

Aubrey - Well, stem cell therapies are, of course, in many cases already in the clinic or in clinical trials and that applies certainly for some aspects of ageing, as well as for early life diseases. For example, Parkinson’s disease, that’s a disease which is very much caused by the loss of cells - a particular kind of neuron in a particular part of the brain which happens to have a much higher rate of cell death than most neurons, so we end up losing a lot of them and that’s why we get Parkinson’s disease.

Stem cell therapies to replace those neurons are already very much underway, some clinical trials are happening. The very first attempts to make this work were actually made 20 odd years ago and back then we knew very little about how to manipulate stem cells so the results were extremely patchy. Only a few people benefited, but the people who got lucky and did benefit they were completely cured, so people are very hopeful about that kind of thing.


Add a comment