Could smartphones diagnose your illness?

02 June 2015

Interview with

Peter Cowley, Entrepreneur and Angel Investor

The mini, personalised computers that are smartphones have revolutionised the Smartphonemodern world. We're now more connected than ever before and, increasingly, thanks to the huge variety of applications available for download, we can enhance the capabilities of these devices way beyond being just a phone. Technology investor Peter Cowley explained to Graihagh Jackson just how big an impact this could make on the healthcare sector...

Peter - If you take a modern smartphone which is really a computer with a phone attached to it, there are a huge number of sensors in it. There's over a dozen sensors in there already. Not all of them are relevant of course to health applications, but things like the microphone, if we want to listen to our voice, there are temperature sensors in some of them. More modern ones have got means of measuring heart rate etc. So, if you take the number of sensors in there already, there's already an amount of data that can be derived from the phone. The phone is then connected of course to the cloud and that data can then be analysed by and then passed on to other people.

Graihagh - And it's not just the apps that we can download in the sensors that are already within our phones. There's actually stuff that we can plug on to our phones and enhance that even further.

Peter - Yes. There's an amazing number of sensors one can plug in - a glucose meter for instance if you're diabetic to save carrying around another device because it's built into your phone. There's a blood pressure monitor cuff. There's even an ultrasound device which when plugged in, really just to possibly check one's unborn baby.

Graihagh - So, you could just plug this into your phone via say, the volume port or even the charge port and get the ultrasound up and look at the baby in real-time. That's incredible!

Peter - Exactly, using the charge port. Yes, there was a little start up that I saw based at Slovenia that's now based in California that won a prize in Vienna recently. The device I brought in with me today is actually ECG. So, this detects the heart rate and also the electrical impulse of the heart. This plugs onto the back of the phone. It generates, turns the electrical signal into sound and then goes through the microphone on the phone. As you can see that my heart rate is even higher than it was earlier.

Graihagh - I was going to say, it was 98 before. It's now 115. So, you're obviously feeling a little bit nervous.

Peter - Yes. It's stressful being in front of a live microphone. You radio professionals don't seem to have that problem. But the important thing is you can see the wave form of the heart. Now, I can't interpret that. I'm not a medic, but I can then take a snapshot of that and send it to my heart surgeon who can then say, "Fine. Peter, you're okay" or "Please come and see me."

Graihagh - So, that's now, and these things are all available now, but what can we be looking forward to in the future?

Peter - In the near term, the big that's going to be coming into our high end phones which will gradually work its way down is a type of gas sensor. So, it's monitoring a whole variety of gases from carbon monoxide, possibly for situations where there's gas leak from a fire, carbon dioxide, volatile organic compounds. Now, these are very complex set of things like aldehydes and ketones, and hydrocarbons. The important thing there is air quality. So imagine going for a run in the summer in a polluted city and your phone telling you where to run and where not to run based on the quality of the air there.

Graihagh - Wow! That's quite something. All these monitoring, we're doing a lot of it already. What's the benefit? Why do we actually want to do this other than just say, a bit of personal interest I guess?

Peter - Yes, this goes for tech and early adopters. Two things really - one is the so-called quantified self where we weighed ourselves for a while, we've checked our calorific spend, we're also getting to the point where we want to measure other things like blood pressure and heart rate, etc. Medical profession would benefit a lot from having that data. Once it can be clinically proven that a data is correct, having that data so we don't have to continually visit our GPs to have tests done. So that our mobile devices will then in the end potentially predict when we should go and even book the appointment with one's GP actually if we look forward 10 or 20 years.

Graihagh -  And you say, when they're clinically proven to be accurate, does that mean they're currently not accurate and there are ongoing trials to see whether they are accurate enough to be used as a diagnostic tool?

Peter - That's a very complex question. The point between taking some data and making it clinically usable it's going to be a while before the medical profession will believe the sensors will be good enough to use instead of the devices they've got inside the hospital. But it's a precursor to that which will then warn to the point where you can have test done internally in the hospital. But go forward 5 or 10 years, there's no reason why we shouldn't get that far.

Add a comment