Emu eggs, vision aids and bed bugs

05 November 2019

Interview with 

Richard Hollingham, Space Boffins; Keziah Latham, ARU; Peter Cowley

TEAMWORK

A circle of arms and legs

Share

Our experts  - Richard Hollingham, space and science journalist; Keziah Latham, optometrist; Peter Cowley, tech investor, and Sophie Mowles, behavioural ecologist - brought along some show and tell items to show us...

Chris Smith - And let me introduce you to the panel who are going to help me answer your science questions this week, Richard Hollingham is an award winning space and science journalist. He also makes the 'space boffins podcast' has been going a while now.

Richard Hollingham - Must be! Yes. It is eight years more than eight years. Yeah I know one of the one of after your podcast of course we're one of the early podcasts and now everyone's doing it.

Chris Smith - Yeah it's going strong.

Richard Hollingham - It is. It's still going very strong. Yeah.

Chris Smith - And what have you brought for us to get you fired up in the space realm?

Richard Hollingham - I've brought some show and tell it's in a plastic bag so you can hear. This is from 1954 "The Boys' Book of Space", only for boys.

Chris Smith - Where do you get that?

Richard Hollingham - Patrick Moore! I bought it from a charity shop in Norwich. It talks about and it goes through all the science, everything we know about the moon and Mars and actually what's interesting is there's a section at the end, it's got some beautiful pictures of retro rockets. It's in 1954, so before there were rockets, we had the V2 rocket, we had other rockets but no one to put anything into orbit yet - so the first satellite was 1957.

Chris Smith - Well I love looking at things like that to see what people's predictions were. Star Trek, if you look at Star Trek I mean it wasn't Patrick Moore's book obviously but it made interesting predictions about where we would be with tech by 'X' years and much of it's come to pass. What does Patrick Moore's say?

Richard Hollingham - Yeah well that's really interesting. So he says the first true spaceflight will take place sometime between 1980 and 1990. So way off then! So we are the first satellite 57, first man in space 1961, man on the moon 1969, but some things are pretty much spot on and the space station will be fully planned by 1995, and its construction will start between 2000 and 2020. So we know we have now the International Space Station, right now there are six people on the space station, it's been continuously occupied since the year 2000. So actually space station was pretty much spot on, first lunar voyage by 2020. Well we've had that 69 but we're going back by 2024 and first expedition to Mars will set off around 2050. He is probably right.

Chris Smith - He's a visionary.

Richard Hollingham - He is. He's probably still right, The Boys' Book of Space.

Chris Smith - And talking of being visionary sitting next to Richard, Keziah Latham is a vision specialist she's at Anglia Ruskin University, so horrible pun but what's caught your eye?

Keziah Latham - Well thank you much. What I have brought with me, to follow on from the space theme, I've brought some low vision aids and the first one I've brought is actually a telescope. But this is not the sort of telescope that you would use for looking at the stars. You could, but it's a low vision aid to help somebody who doesn't have terribly good vision, to magnify things in the distance.

Chris Smith - It looks like a pair of glasses wearing a pair of glasses.

Keziah Latham - It does look exactly like that. So you've got a spectacle frame, it's got a lens at the back and then actually with all the telescope is two lenses separated by a gap of air and that's exactly what we've got here so we've got a rear most lens and then a gap of air and two lenses sticking off up at the front like sort of bug eyes and we can adjust the position of the gap between those two lenses, and that will give you a magnified view of something in the distance, be it stars or be it the television.

Chris Smith - So who would benefit from that chiefly?

Keziah Latham - Pretty much anybody who has got a loss of vision that means they can't see the things they would want to do in the distance, we use a lot of techniques to magnify things to compensate for that. So the second thing I've brought is something that would magnify things for closer work and this is just a positive lens, it looks a bit like a paperweight, a sort of a slice out of a paperweight, with a battery pack on the back. So the idea is that it's a curved lens, it's a positive lens which is going to create a magnified image, we've also got a nice light that shines into it, and once the light is on, it bounces around inside the lens so that we really brighten up the image that we've got there - we also get some magnification out of it. So we make things bigger and brighter and a lot easier to see for somebody who's got vision loss.

Chris Smith - Thanks Keziah. Now also here is Sophie Mowles, she's also at Anglia Ruskin she's been on the programme before. Now you wouldn't show us what you're what you've snuck into the studio. So everyone is eager to see what it is you've got.

Sophie Mowles - I've kept it a secret until now I've hidden in my hat and I have this.

Chris Smith - Looks like an enormous egg!

Sophie Mowles - It is indeed. It is an enormous egg. Now this is an egg of an emu. So I've brought this back from when I was working in Australia, they farm them there, it's all ethical and it's been blown - so this is as it would be. But what's really interesting about it is the colour, now it's faded a bit, I used to have it in a stand so you can see the original colour there, and it's a very dark greeny black. Now there are two pigments that are making that up but the reason being it's camouflage. So they have male parental care and allows the male to go away from the nest and he can leave the eggs so nicely camouflaged. Ostriches have big white eggs because they're in very very hot places and being a white egg it's obvious to predators but it does reflect a lot of the heat. So that's stopping the egg from getting scrambled. But it's really cool and why I wanted to bring this in is because it's so different is that a couple of years ago, some dinosaur eggs were discovered with the same pigment in. Which indicates that they had the same parental care mechanism and it's probably male parental care there too. All from what we know about this!

Chris Smith - I did read from researchers also in Australia a few years ago, they were looking at birds recognising their own unique speckled pattern on their eggs being that they could then tell if say a cuckoo had come in and tried to sneak an egg into their nest and they could tell that the wrong number of spots were on the eggs for example - so that's another mechanism to avoid a different kind of predation isn't it.

Sophie Mowles - Yes cuckoos seem to be able to get past this, especially in the UK where we've got different genetic lines of cuckoos that mimic the speckled genus of different kinds of birds' eggs, for example the reed warbler. The problem is that your eggs are going to change a little bit over time again to get bits of feaces on them, bits of blood, and the speckling will change over time, so it's best not to imprint completely on them just in case you make a mistake and chuck one of your own eggs out of the nest because it looks a bit wrong now.

Chris Smith - Thanks Sophie. Next, Peter Cowley. He's a tech expert. He's also an angel investor and is invested in some 40 companies or so now.

Peter Cowley - Over 70 now.

Chis Smith - Over 70.

Peter Cowley - Of which 50 are still alive!

Chris Smith - Last time on the show you brought in a jet engine the size of a small dice that one would or di one would play a board game with. I've got lots of people were intrigued by that. What have you got for us this time?

Peter Cowley - This isn't the same at all. I was with a BBC film crew on Friday here in Cambridge, where we were filming how angel investors operate to try and disprove that Dragons' Den is the way that we live - which it certainly isn't. I went to see a company that I am a shareholder in and a director of, which has a device that detects bedbugs. So I have some bedbugs here - they are dead! They're surprisingly big actually. They're about the size of very small lady birds and the device itself is here. The reason this was set up was a couple of guys here from Cambridge University who are in the 30s actually and one of them had a big problem with bedbugs, so they've decided to go for pest detection. So not specific to bedbugs they're also working on some forestry pests up in Scotland, and the device itself is different from the competition in that it's long battery life, very low power. So the bedbugs are attracted by a lure, which is made up of dead bed bugs. At the moment it is made up of dead bed bugs, in time it'll be some sort of chemical formula. There's a little camera and the hardware in here has to be as low power as possible, so it has a look and sort of thinks this might be a bedbug rather than a spider or anything else, and if it thinks it is it sends it up to the cloud where some machine learning.

Chris Smith - Should be clear the image goes to the cloud, not the bedbug! That happens later once the bedbug is dead...

Peter Cowley - Exactly wherever bed bugs go! And so that goes to the cloud, checks whether it is a bedbug, and then emails the hotel, usually the hotel it could be a hospital, running a report saying that room 17 has a bedbug. The point is of course is to get them earlier before they multiply before and start biting the humans.

Chris Smith - Does it kill the bedbug in the process?

Peter Cowley - It has some technology in that to do that, but that's not the point at the moment, the point is to make sure it is a bedbug, and get in quick because you can't kill all of them.

 

Comments

Add a comment