Can chromosomes be repaired?

21 April 2015


A baby explores a model of DNA



Can chromosomes be repaired? My daughter has Angelman Syndrome, and I was very excited to hear that there might be "tools" to repair this.


We put this question to geneticist and Naked Scientist, Kat Arney...

Kat - Angelman syndrome is a really fascinating genetic disorder. I mean obviously if you're a family that's affected by it it's probably more distressing than fascinating. But it's something called an imprinted disorder. So normally, we get one set of all our genes from mum, one set of genes from dad, and they're both pretty much the same. Both copies of the genes are working; the genes that make your hair, your eye colour, all this kind of thing. Both copies, mum and dad's copies, are both working. With certain genes, there are about 100 genes in humans, it's either mum or dad's version that works depending on the gene, and the other one is always switched off. And it's always very stereotypical. At certain genes for example, there's a particular growth factor and that is always dad's version that is on in your cells. Particularly, these genes seem to be relevant in development in very early life. Angelman syndrome is a disorder where this process has gone wrong. Basically, the copy that's meant to be on is not working and there's no backup, whereas if you have two copies of every gene you've got a backup. So, there's been a lot of discussion with some of the new genetic technologies that are coming online, these things called gene editing techniques. There's a very famous one called CRISPR, which listeners might have heard of, where you can actually directly tinker with the chromosomes - you can change bits in the DNA. The problem with something like Angelman syndrome is that it's a developmental disorder. It's something that really starts from when the baby is growing in the womb and continues on into life. It's going to be very hard, even if you could repair the DNA. It's debatable as to whether you could actually repair or turn back the clock and turn back the problems that it's caused with the growing child.

Chris - So, you're saying there are two problems. One is that you've not just got to deal with what is causing this disorder but then you've got to contend with the fact that you've got an accrued problem already under your belt.

Kat - Exactly. So, if you have say, a genetic problem that means you don't make insulin or an enzyme in your pancreas, or an enzyme in your body or your stomach or something like that, maybe you could change the DNA in just those cells and you would start making the enzyme again, and you would be well. But for a lot of the developmental disorders where they've started almost from the fertilised egg and through development, those kinds of things are going to be hard to reverse. Although there are some intriguing examples we probably don't have time to talk about where there may be things that could help. But I think that gene editing for developmental disorders and those big chromosome disorders is going to be tough.


What about neurofibromatosis? Those affected are because of defective chromosone 17 causing an overload of mass cells to mutate. Does NF apply?

Add a comment