Lithium Batteries Get a Sulphur Makeover

04 April 2013
Posted by Laurie Winkless.

German scientists have designed a high-efficiency, low-cost lithium-sulphur Smart carbattery, which they believe will increase the use of electric vehicles in Germany and beyond.

Earlier this year, the UK government announced an £11M investment in public and private charging points for electric vehicles, which, its hoped will help increase the popularity of electric cars. At present though, the numbers are still small. According to Germany's Federal Ministry of Transport, there are over 40 million cars on the country's roads, but only a tiny fraction of them - around 6,400 - are powered by electrical energy.

The high price of both batteries and vehicles may be a factor in this low uptake, but a more real concern is the comparatively short range of electric cars - their lithium-ion batteries need to be recharged after just 100 km of driving. But a team at the Fraunhofer Institute in Dresden have developed a new lithium-sulphur battery, which is significantly more powerful and less expensive than the standard Li-ion batteries.

Previously, lithium-sulphur batteries have had such short lifetimes (just 200 charge-discharge cycles) that they've been unsuitable for use in cars, but the team's new design increases the lifetime of lithium-sulphur batteries by a factor of seven. They have done this by altering the standard combination of anode and cathode material in a lithium battery. The interaction between these electrodes and the liquid electrolyte between them is the critical factor in determining a battery's performance.

The team, led by Dr. Holger Althues, replaced the usual lithium anode with one made from a silicon- carbon compound, which is much more stable during the charge-discharge cycle. This improved stability reduces the risk of unwanted interactions between the anode and the electrolyte, which, in extreme conditions can lead to a fatal short circuit within the battery. In lithium-ion batteries, the main cathode material is cobalt, a rare, and therefore expensive, material. The Fraunhofer team have replaced the cobalt with elemental sulphur, greatly reducing the cost of the battery. And they have introduced porous carbon into the electrode, which traps the sulphur within the pores, slowing down interactions between the sulphur cathode and the electrolyte.

Suitable large-scale manufacturing methods for these Li-S batteries are now under review, but Althues has also shown that, with further optimisation, the energy density of their lithium-sulphur battery can reach 500 Wh/kg - more than double that of the lithium-ion batteries currently in use in electric cars - meaning that for the same weight of battery, you could drive double the distance.

Add a comment

CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.